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Introduction

Individual income tax evasjon is probably the most widespread econonic
crime in the United States: the IRS estimates that in 1981 a tota].uf $75.3
billion in individual income taxes owel to the Federal Government went unpaid.
an amount comparable to that year's Federal deficit.

In this paper we present a microeconometric analyvsis of income tax
evasion. We propose three new econometric methods for analyzing evasion data.
To begin with we extend the traditional tobit model of evasion, estimated for
example by Clotfelter (1983), to a more general bivariate tobit model of the
type proposed by Heckman (1979), in which filers' decisions whether or not to
evade are separate from (though correlated with) their decisions of how much
to evade. The tobit model of eQasion is derived from Allingham and Sandmo's
(1872) classic analysis, under the assumption that, whenever the extent of
evasion is small, the penalty assessed if the filer is caught is also small.
The bivariate tobit model is also derived from the Allingham and Sandmo
analysis, but under the more general assumption that filers also suffer a
fixed cost if they are caught evading, for example because they face 2 higher
probability of audit in future tax years.n.

The second method we propose addresses the problem of taxpayer errors.
In oﬁr data sample 13.5% of all filers overpay their taxes, behavior which is
most sensibly interpreted as an error either in calculation or in
interpretation of the tax code. We suspect that a compérable number also
underpay due to error, which confounds the analysis of evasijon, since we can
never be sure whether an underpayment is the result of deliberate intent or

error. We present a simple two-stage technique which corrects for taxpayer

errors.
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Finally. we propose pethods which take intu account the IRS® inability
to detect all iustances of evasion. We develop detection controlled
estimation techniques which explicitly model the detection process, and which
allow the probability of detection to vary amongst IRS examiners. Qur
gnulysis follows a wmore general treatment in Feinstein (1986a). A byproduct
of these detection controlled techniques {s an estimate ¢ the incidence and
extent of undetected evasion. which is of considerable policy interest.

we estimate our models using the 1982 IRS Taxpayer Compliance'
Measurement Program (TCMPY) datasct. The TCMP dataset contains approximately
50,000 individual tax returns (of which we use 2.267). each of which has been
thoroughly audited by an IRS examiner; it provides detailed information on the
filer's socioeconomic and income characteristics. and identifies the IRS
examiner assigned to audit his return.

Our results suggest three broad conclusions about tax evasion. First,
the source from which income is derived (capital gains, farm, etc...) exerts a
strong impact on the filer's evasion behavior. Second, together the level of
income and the marginal tax rate have a positive and signifiéant effect on the
filer's decision whether or not to evade taxes, particularly in models which
control for nondetection and taxpayer errors, but exert only a weak positive
effect on the extent of evasion; in addition. we are unable to untangle the
income and marginal rate effects from one _another. Third, detection rates
differ substantially amongst IRS examiners, and much evasion appears to goO
undetected -- we calculate that in 1982 filers' undetected understatement of
taxable income was approximately $62 billion.

The econometric methods which we propose represent an improvement over
earlier efforts in several regards. Much previous work has used aggregated
data. A recent exaip]e is Witte and Woodbury (19853), who focus on the impact
of audit rates on compliance, aud use data aggregated to the three digit zip
code level. Since tlhie evasion decision is made at the individual level,

aggregation is likely to introduce biases into their estimates.
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Clotfelter (1983) does use individual data, drawn from the 1969 TOMP.
and fits a tobit wmodel of evasion. He finds a significant positive effect of
the marginal tax rate on evasion, whiclh he takes as evidence in favor of thé
view that reduced marginal rates would increuse compliauce. However. tobit
models seem to fit the data pooriy iwhich is why we have generalized them to a
bivarjate framework). and we have found that Clotfelter's estimzTes predict
unrealistically low levels of evasion (between $20 and $100). _ln addition.
Clotfelter does not adaress the problems of taxpayer errors and nondetection.

Previous IRS studies have focused primarily oun estimating the
magnitude of evasion. In a study (1983) of the 1976 individual TCMP a group
of experienced examincrs wuas assigned to reaudit a subsumple of the returns,
using income-related documents from the Information Returns Program (IRP)
which were not available to the original TCMP examiners. These more detailed
audits uncovered 3.28 times as much evasion as the original TCMP.audits. which
Jead the IRS to estimate the true extent éf evasion as 3.28 times that
uncovered by the TCMP. Our detection controlled techniques are a statistical
anulogue of this approach, which allow for imperfect detection by even the
most experienced examiners.

The remainder of the paper is organized as follows. The first section
describes our models f evasion and its detection. Section Il contains 2
short description of the data set. Statistijcal methods for dealing with
taxpayer errors and imperfect IRS detecti;A of evasion are discussed in
sectjon I111. Section IV presents our empirical results and discusses their
interpretation. Section V contains estimates of the magnitude of undetected
evasion in the 1982 taxpaying population. and a policy analysis of the effect
of several recent U.S. tax reforms on evasion levels. Finaly. a conclusion
summarizes our findings and suggests directions for further research, and an

appendix contains technical details.



Section I: Model Development

—

Filer Rchovior

In an important paper Allingham and Sandmo (1972) pionecred the study
of income tax evasion as a rational economic decision. drawing upon earlier
work on the economics of crime by Becker {196G8). In the A)lingham and Sandmo
framework each filer possesses a concave utility function U( ), and true
_income 1. The filer also possesse; characteristics x which enter U primarily
through their effect on his degree of risk aversion. The filer reports his
income tc the IRS and is taxed based on his report; if he reports less than
his frue income, he faces the probability p of being caught evading, in which
case he pays a penalty on the difference between his reported and true income.
Let Y denote this difference; Y is then the extent of evasion, and is assumed
to be nonnegative. The filer chooses Y to solve:

Max  (1-p)U(I-t(I-.)) + pU(I-t(I-Y)-6(Y)) (1)

Y subject to: 0 Y I
where t(I-Y) is the tax payable on the filer's declared income, and 6(Y) is
the penalty function specifying how -uch~the filer must pay if detected

evading in the amount Y. The first order condition associated with (1) is:

(1-p)U' (I-t(I-Y))2' (I-Y) + pU' (I-t(I-Y)-O(Y))(t'(I-Y)-0'(Y)) (2)
« 0 if 0O<Y<I
< 0 if Y=0
> 0 if V=1

In the United States tax system the usual penalty ©( ) iqposed for detected
evasion equals 1.25{t(I)-t(I-Y)]), which has the property that it is small

whenever the extent of evasjon is small. If © is assumed to possess this
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property. the first order condition in {2) is both @ necessary and sufficient

condition for a solution tu (3). Linearizing {2) sbout the filer's true

income 1, we derive a8 tobit model of evasjon:

Y‘ =~ xB - € {3)

where x includes the filer's characteristics, mentioned above, as well as his
true income 1 and the marginal tax rate t' evaluated at his true income, and €
is a mean O disturbance drawn from the distribution F.

Clotfelter (1983) has estimated the tobit model in eguation (3)., but
his results predict unrealistically low levels of evasion. We also have
estimated the tobit wmodel in (3}, but have found it to fit the data poorly.

In particular, it predicts extremely low probabilities of evasion, F(x8), and
conditional (on evasion having occurred) expected levels of evasion, E(Y]| € >
-x8), which are essentially constant across a wide range of characteristics x,
including all relevant incomes. wWe believe the reason the tobit model fits
poorly is because it models both the decision whether or not to evade and the
decision of how much to evade (given that evasion occurs) as determined by the
same model xB8 and same error distribution F. Nearly half the TCMP population
does not evade, which indicates that F(-x8/0) (the probability of no evasion)
is large. However, amongst those who do evade the extent of evasion is
substantial: the average underpayment améhgst those who underpay is $5.000,
which indicates that xB is large. These two effects pull in'opposite
direct.ons and confound estimation.

To surmount this difficulty we generalize the tobit model in equation
(3) to a bivariate system which explicitly distinguishes between the filer's
decison whether or not to evade at all. and his subsequent decision of how
much to evade. The model we propose is related to the bivariate ;election

models pioneered bﬁ Heckman (1979) and discussed in Amemiya (1985). To
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motivate this system we assume thut & filer who is caught evading not only

suffers the penalty O, which us we discussed above is small whenever the
extent of evasion is small, but also suffers a fixed cost which is independent

4

o’ the level of evasion. We sugpest two justifications for this fixed cost.
Tirst. a filer who is caught evading may Iace & higher probabili‘y of reaudit
in the future. Second, when a filer is caurht evading it signals the
communjty that he is dishonest. which affects the way he is treated. Of
course both of these effects are likely to be larger when the extent of
evasion is larger. What is important for our purposes is that they are
substantial even when the amount of evasion is small (they are discontinuous
at the zero evasion level).

Under the fixed cost assumption the first order condition in (2) is no
longer sufficient for a solution to (1), since the objective function is no
longer continuous at Y equal to zero. Equatian (2) must be supplemented by 2
second equation, which compares the filer's utility at the Y value which

solves (2) (and which is given by equation (3)) to his utility at Y equal to

zero. We reverse this ordering and formulate the system:

Y ;" x,B; + € (4)
E
Yl = 1 (evasion) if Yo, 2 0
Y1 = 0 (no evasion) if Y 1 <0
and conditional on Yl =1,
Yz = xzsz + €y (the extent ?f,evasion) (5)
Yz > 0

where x_ and x

1 o are filer characteristics, and 81 and Bz are parameter vectors

to be estimated. The errors cl and €, are drawn from a bivariate normal

distribution: they possess correlation p, :2 has variance 022. and cl's

variance is normalized to one for jdentification. Equation (4) is a binary

choice selection equation, while (5) is & nodel of the extent of evasion.
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since (5) is couditional ot Yl 2 1. jt is conditionu] ou
‘1 > -xls,. which affects (51 because cl and cz are correlated. Heckman shows

that (5) can bLe rewritten es:

Y, = xzsz - rmzﬁ(xlﬁl)“tlxlsl) €, (5)'

-

= (3282) - €

”
-

where Var(e',) equals

2 2, 2 , g . . falx
a, [(1-p")-p"(1-(x,B,) (58,0 (x,B, -6 (x,8,)/4(x,8,))))
which we denote 0'22. The fuct that YZ must be positive imposes further
restrictions on (5)°. It particular, we must treat (5)' as a truncated tobit
model. in which we explicitly recognize that c'z is truncated below at -
(XZB2 + oozé(xlBl)'t(XIBI)). Working with (xzﬁz) and © o @8 defined, we use
conditions for a truncated tobit model presented in Amemiya {(1985) to rewrite

(5)' as:

Y2 = (XZBZ)' - 0'2¢((x282)'/0’2)/¢((x282)'/0'2) + €'y (3)"

= (x 850" + e

where c"z is mean zero, and possesses a truncated normal distribution with

variance

- 2 .2 . . ' . |.'|. . t t
O, = S, {1 - ¢((A282) /0 2)/&((h282) /0 2) ((AZBZ) /0 2) - (6)

¢((x282)‘/o‘2)/§((x232)'/0‘2)])

Equation (5)" is the variant of (5) which we use for estimation. For later
=
reference we define ¢ = (1/0".)6((Y, - (x,8,)")/0",). the probability of
2 2 2 272 2
observing evasion in the amount YZ' conditional on evasion occurring (Y, = 1).
We concentrate on estimating two types of models. First., we estimate

the binary choice probit model] of equation (4)., which is a model of the



incicence of evasion amongst the pOpilaLion. As Heckman shows (see ilsu
Amemniye) this equation can be estimated consistently over the entire sample of
Loth evaders and nonevaders, without estimat ug (51, Second, we estimate
(5)". using the estimates of El obtained from estimating the binary chuice
mode] (4) as weights. We call this second estimatjon a bivariate tohit model

of the extent of evasion. It is a nonlinear least scuares form.

The Detection Procexs

The detection of tax evasion is difficult, and by all accounts muzh
evasion goes undiscovered by the authorities. The IRS {tself has admitted the
difficulties it faces in identifying evaders, and has repeatedly asked
Congress {or more money with which to increase detection efforts. While
previups empirical work has implicitly assumed that the IRS detects all
evasion (at least within the TCMP sample), recent theoretical contributions by
Reinganum and Wilde (1985) and Graetz, Reinganum and Wilde (1586) have focused
attention on the problem of detection., and especially on the interdenendence
between the detection process and filers' evasion decisions. we will follow
the approach of Reinganum and wilde and of Feinstein (198Ga, 1986b) in
explicitly modeling the detection process. =

Reinganum and Wilde view the evasion decision and the detection
process as the outcome of a sequential move game of incomplete information.
Abstracted to our puposes, this game proceeds as follows. The filer moves
first: given a true income I the filer chooses huw much to evade, Y, reports
income I-Y to the tax authorities, and remits a tax t(I-Y). We have modeled

this part of the game in the previous subsection.1 Next the IRS tax

) . .y
Notice that the filer's true income 1 is hidden from the authorities' view,
which is what makes the game one of "incomplete information™.
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~uthorities move: 8h exefte b iy ess. Zlel Lo Tt ~eTUrL. de, .0ey Dhow much
time and efffort to devc-e o audliving. and either §ete::s ne ful.s to detelt
evasion. Tﬁis pane is ¢ sirwlifivation of the wrue situstior on <w0 COounts.
First. it ignores a pric: sizge in the gane during which the authiorities
choose the tax function . ae penally sunctios @, the acprecate tusources to
devoute Lo detection. ané the audit ruis. gect..d. it does not split the
detection prucess into g WO CUmpOnenis. the decision whether o not to
audit, and the subsequert d-zision of tow much =ffort t¢ devete 10 the audit.
In the TCMP tax sample wiich we use every return is audited. so we focus
exclusively on the seconrd aspect of dezection.

=
we define the lzzent variable ¥ to be the intensity ¢f the detection

=
process, and specify a iinezr detectior technology for W
®
w = z@l - U - cs (7)

where z denotes variables w-ich determine the intensity of detection. such as
the examiner's GS (Governmer.t Service) grade, u denotes the ability level of
the examiner assigned tc th: case. and 2, js a mean zero error drawn {rom the
cdf G.3 The u variables are examiner fixed effects designed 16 capture
heterogeneity amongst exzmisers. If we were able to obtcin good information
about each examiner's so-ioczonomic chzracteristics, such as education and
age, we might be able tc dispense with =he u's. Since <he u's are fixed
effects, for the technic.es which we propise tc be consistent reguires 2
reasonable number of cases for each exzriner for whom we specify 2 fixed
effect (see Heckman (in vanexi and McFedden (19e3)) for & discussion) -- hLence
we specify examiner effects only for those exariners with at jeast 15 cases in
the sample. Conditional on the filer having committed evasior. detection

2It would be preferable <o cerive (7) fror a theoretical model in which the
examiner optimally chooses tne time anc effort o devote to 2 particular case,
taking into account all zhe -elevant CLsis and benefits. While we have
developed such a model, we €2 not preseot it here as we were unabie to obtain
she data necessary to {1s estimation. :

“within the sample examizer's will be incexed by the subscrip: J. SO that uj
will denote the jth exanine:r s abjility ievel.
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.
orcurs if W L 0. an event which ocours with probabiiity Gizn - v). We

define:

L1 iffw 20 (8)

-
L=0iffw <0

e assume that if detection veecurs it s complete und the entirce amount Y of
evasion is detected, whereas when det -ction fails no evasion is found. This
js an oxtreme model, and a more general formulution would allow for
“fractiunal detection™ in wh:ch a variable amount of the evasion is detected.4
Equations (7) and (8) focus exclusively on the problem of nondetection, which
might be called a “type 1 error” committed by the examiner, and ignore the
complementary problem of a “type II error” which arises when an examiner
falsely accuses an honest filer of evasion.5

Viewing evasion and its detection us parts of & larger encompassing
system leads naturally to a consideration of the intgrdependence which arises
between the filer's evasion decision and the IRS examiner's willingness %o
devote time and effort to the audit process. A filer will be more likely to
evade if she believes the probability of detection to be smalll and an
examiner will devote more time to a particular return if she believes the
probability of evasion to be high.

Typically the filer possesses little information about the examiner
whom she will be assigned (though she may possess quite good jnformation about
the audit process, which we do not nqdel): hence we do not explore the

dependence of the evasion decision on the filer's expectation's about the

4Extending (7) and (8) to allow for fractional detection would be empirically -
useful because IRS examiners tend to be better at detecting some types of
evasion, such as over-expensing.'than others, such as non-reporting cf an
income source . Alternatively, evasion and detection could be estimated
geparately (and probably jointly) over a variety of income tvpes.

Though type 11 errors do arise occasionally during the initial audit phase,
there is substantial evidence (IRS [...]) that they are generally corrected
during follow-up investigations.
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detestlion proc-£s. when the eaniner eis0 PUSKESSUL jittle intormation about

the filer. expectations do not enter the detection equation ejther. we call
this the "base casv” and focus most of ouf attention on it. When the examiner
does possess good information about the filer. this information shoula he
included in the detection function (8). 11 for example Lhe examjner observes
the same variables x1 as the econometrician, then ve can specify the

examiner's assessment of the probability of evasion as
X ¢
¢ 181) (9)

from above. We then amend the detection equation (7} to

L

W = z[l + U + oQ(xlel) + €y ) (10)

which can be interpreted as a linear rational expectations.formulation. The
parameter § is to be estimated and measures the impact of the examiner's
information on the detection process -- we expect‘s to be positive. If the
examiner ﬁossesses better information than the econometrician (10) remains
appropriate, but tﬁe errors ¢, (and €, in most cases) &nd €4 will becone

correlated due to the examiner's extra information which derives from sources

otner than Xy (and xz).

6In the most general formulation. the filer's likelihood of being detected
should depend both on whether or not she evades, and how much. This leads tc
a simultaneous (recursive) system in which Y. enters the detection equation
(8). This model is beyond the scope of the current paper, but remains an
4{mportant topic for future research.



Section 1) : The Data.

Our data are drawn from the 1952 Taxpaver Compliance Méasurement
Program (TCMP 11I1-8) data set paintained by thie Internal Kevenue Service.  The
TCMP consists of tax information on a stratified random sample of 50,653
individual income tax returns filed for tax vear 1982. Each individual in the
TCMP sample was subject to an intensive audit by an IRS cxaminer: the
examinations were carried out over a period of approximately two years
beginning in August 1923. Since every return is audited, the TCMP allows a
direct comparison of tie taxpayer's report of each line item *o the IRS
examiner's assessment of the item -- hence its usefulness in studying evasion
behavior. For each Jine item, we denote the taxpayer's report of the item as
"per return” (subscript R and the IRS examiner's assessment of the item as
"per exam” (subscript ). For example, Capital Ggixns reported is CAPGAINS..
whereas Capital Gains assessed by the examiner is CAPGAINSE.

We use a_subsample of the 1982 TCMP consisting of 2267 cases from
four districts.7 We restrict our sample to all cases from these four
districts, as opposed to.randomly sampling a few cases from each of the 57
districts. so as to ensure that the sample includes a reasonably large number
of cases for each IRS examiner for whom we specif& a fixed effect and
calculate an individual detection rate.8 Since eaclh examiner audits cases in
only one district, random sampling from all districts would not fulfill this
criterion. The four districts were selected according to the following
procedure: first we chose at random four of the seven geographic regions into
which the IRS divides the country; then we randomly chose one district from

each of these four regions. The districts constitute a representative cross-

‘The IRS has requested that we not revezl the names of these districts and
that we make it clear that we did not have direct access to the data. Rather,
pe prepared cumputer programs which the IRS subsequently ran.

Recall that consistency of the examiner fixed effects requires a large number
of cases for each examiner for whom an effect is specified.
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section of the national TCMP populat.ion.9 For each case. we have the
following variables; Adjusted Gross Income (AGI), Capital Gains lncome, Total
Ded :ctions, Total Taxes, Occupation Category. Marital Status. Schedule C (i.e.
income from a sole propfietorship) Income, Farm Income, and whether or not the
filer is wged over 60. Each variable is present in both the “per return™ and
"per exat.” forms. we summarize Schedule { and Farm Income as dummy variables
which take the vulué one for a filer if he has nonzero jncome in that.
category. Dummy variables are also specified for Marital Status (one if
married), aged over G4 (one if over 65), and for two occupation groups: (i)
GCovernment officials, religious and lega) personnel and entertainment workers:
and (ii) Medical personnel. The occﬁﬁation group dummies arc estimated in the
binary choice model, since we believe that more visible individuals such as
those in (i) and (ii) are likely to suffer a larger fixed cost if caught
evading. Finally, we also specify a dummy variable for those filers
possessing AGTE greater than $40,000. and use this variable in our bivariate
tobit models.

Table 1 reports summary income and tax statistics for our sample.
"AGIE" refers to Adjusted Gross Income as calculated by the IRS examiner,
"AGI. - AGIR" refers to the difference between the examiner's assessment of
the filer's Adjusted Gross Income and the Income originally reported by the
filer, and "TAX_ - TAXp" refers to the difference in tax due. We note that
our sample (and the TCMP as a whole) contains heavy oversampling at higher
Jevels of income. For example, 8.7% of the filers in our sample have AGI in
excess of $100,000 while the figure from Statistics of Income 1982 is a mere
0.6%. This oversampling does not jeopardize the validity of our estimation
techniques (since it is based on explanatory variables which we observe).
However, to insure that the results of our estimation are fully representative

of the U.S. taxpaying population, we weight each observation to reflect its

9. .. . e
In particular. the incone distribution ("per exam") for our four districts is

essentially identical to the income distribution for the TCMP sample as a
whole.
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trequency in the overall popn]atiou.lo

The weiphls were made uvaiiable to us
vy the IRS.

The detection-controlled estimation procedures require datn ou the
IRS examiner assjgned to each case. For all ciases we know the GS grade of the
examiner assipned to the case. and summarize thix information in the dummy
variable GS. which takes the vi Jlue one if the grade is 11 or higher. In
addition, for 207" of the cases the IRS was able to identify the name of the
examiner by matching the TCMP file with the original audit checkshects, which
the exominer is required to sign. A total of 353 examiners arce identified in
the data. Of these. 44 audited 15 or more cases, and we assign fixed effects
to ecach of thesc: they are respunsible for approximately half of the cases in

our sample.ll

Table 1: Summary Statictics.

Statistic Cases Mean Cases Cases Mean
Positive of Positive Zero Negative ‘of Negative

Cases Cases
AGIE 2153 $52,5506 0 114 $49,522
AGI -AGI, 1431 $5,327 531 325 €1.779
TAXE-TAXR 1337 $1,707 -624 306 §573

Note: Subscript "E" refers to item as "per exam” and subscript "R" refers to
item as "per return”. All "negative cases” represent overstatements of
liability.

1oFormalZly. we view the weights as heteroscedasticity corrections which arise
‘ because filers with unusual characteristics (very high or low income) are
like]y to exhibit more variable behavior.
For the remaining cases detection depends upon the overall constant and the
GS grade (and an expectations term in one of the model extensions).
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Section 111: Statistical Techuiques

Estimation of the binary choice and bivariate tobit models presented
in Scetion I is complicated by two jusues: (1) taxpayer errors. und (21 the
inability of the IRS te detect all instances of evasion, behiavior which we
have modeled in Section 1 by specifying an explicit detection process. In
this section we present stutistical Lcchniques which address cach of these

topics.

Error Corrected Estimation

Taxpayers not only underpay their taxes but also_frequently overpay
them (see Clotfelter (19£2})), presumably Secause they commit errors either in
interpreting the tax code or in calculating their tax liability. Taxpayer
errors seriously confound the analysis of evasion because they can leud to
underpayme-t of taxes as well as overpayment. Ignoring errors and assuming
that all underpayments are the result of deliberate intent bLiases estimates,
lJeading us to predict too high a probability of evasion for error prone
filers.

Figure 1 depicts the distribution”;f over and underpayment of taxes in
our sample: 13.5% of the filers overpay, as compared with 59% who underpay,
and the overpayments are of considerably smaller magnitude than the
underpayments {the average overpayment is $573, and the average underpayment
§1707). If taxpayer errors are distributed symmetrically around zero (with a
zero error resulting in correct payment), then we would expect about 13.5% of
the taxpavers to understate taxes as a result of error. subtracting this

figure from the 59% who actually do underpay, we would conclude that 45.5% of
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al! -axpavers evade. In the terainology which we adopt 45.5% js au “error-
corrected” estimate of ihe evasion rate.

We present s two-stage procedure for taking account of errors which
formalizes this principle of error correction. Consider the binary choice
mode) of evasion, in which t1 filer either does or does net decide to evade,
and coucurrently eitler does or does not commit an error. From (4) the
probability of evasion is ¢(x,8.). Define the probubility of error to be
H(vw). where v dncludes filer characteristics which affect the likelihood of
error and H is a cumulative distribution function.12 We assume that the
probabilities ¢ and Ul are independent, and that taxpavers who commit errors
are equally likely to overpay as to ﬁﬁderpay their taxes (the density h
corresponding to H is symmetric about 0).

Each return now falls into one of five categories:

(1) No evasion, no error, which occurs with probability (1-¢)(1-H)

(2) Evasion, no error, which occurs with probability ¢(1-H)

(3) Evasion, error, which occurs with probability &H

(4) No evasion, positive error. which occurs with probabilit& (1-¢)H/2

(5) No evasion, negative error, which occurs with probability (1-¢)H/2.

Taxpayer returns fall into 3 classes: understatement of tax
liability, correct statement, and overstatement. We make one additional
simplifying assumption: that when both evasion and error occur the magnitude

of the evasion is always larger than that of the error, so that on net the

12Lying behind this formulation is a "two-sided” tobit model of the error
process, in which the probability of no error is 1-H, and the probability of a
positive or negative error in the amount x is (1/0 )h((vw-x)loh). It is easy
to shuw that the binary choice version of this model, in which only whether or
not a postive or negative error has been committed is observed, and not its
magnitude, produces consistent estimates of ¥ up to a scaling factor {see
Amemiya (1985) for an analogous proof that probit estimates are consistent for
a tobit model, up to a scaling factor). See the conclusion of this subsection
and the appendix.
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.

e underpays his taxes. S Unaer this assunprion the probopilities

associated with the three classes are:

Plunderstatement) s ¢ - (1-¢)U°2 (1)
Fl(correct statement) = {1-¢)({1-H)

P(overstatement) = (1-¢)H/2

Indexing returns by i and using €, C,. and C4 T denote these three clanses,
(3

the Jog likelihood of the sample is:

L =L Joplé,+(1-¢ )0, 2] T logl(1-¢,)(1-H)] ~ T 1og[(1-¢j3ui/z (12)

icc1 ieC, ieC,
Equation (12) could be estimated jointly over:the parameters 8] of & and ¥ of
H. Instead we propose 2 simpler two-stage procedure. Stage 1 uses only data
from the last two classes of returns, which consist of filers who have either
correctly stated or overstated their tax liability. The conditional
likelihood of a return falling into each of these classes (given that it has
fallen into one of the two. but not into Cl) is then:

P(correctjcorrect or overstatement) = [(1-¢)(1—H)]/[(1-¢)(i-H/Z)] (13)
(1-H)/(1-H/2)

P(over|correct or overstatement)

H/{2(1-H/2)]

and the conditional log likelihood is

L = [ logl(1-K,)/(1-Hy72)] + T lop(Hy/(202-K;/2))] (14)
ieC ieC
2 3

Notice that these probabilities are independent of . Therefore we can use
this first stage to estimate the paramecter vector ¢ by applying maximum
likelihood to (14), without having specified é or 81. In the second stage we
return to (12) and estimate the parﬂmeter vector 81 of & over the entire
sample, using the fitted values for H from the first stage, H = H(vw), as

13 . . . :
This assumption is, to somu wlleui, supported by the data: overpayments of
tax are on average much smaller than underpayments. '



. i9

weipnts.  These second round estimates of E1 are then error corre ted” ih
Lhot consi tent estimates of the likelibood of error have been explicitly
included <in the model. The first stag. error corrector is itself of iuterest.
since it provides estimutes of the relationship between Laxpayer
charactvristics and error proueness.

The error correction priuciple extends rvadily t@ the bivariate tobit
podel of evasion. First, the bLinary chuice error correction model (Lased on
equations (12) and (14)) is estimated, producing errvor corrected estimates of
Bl and corresponding error corrected weights ¢1. Next, the tobit an:.Jogue of
the error corrector in equation (14) is estimated: estimation is restricied
to returns with correct statement or overstatement of liability. with the
probability of no error being set to l-H(V¢/0h). and the probability of &
positive error X being set to (1/2)(1/0h)h((v¢—x)/ah). where h is the dentity
of H. Finally. the bivariate tobit analogue of equation (12) is estimuted,
using both the error corrected hinary choice weights ¢] and the tubit error
correcting weights ¥ and oh. In the appendix we present a more formal

development of this procedure.

Detection Controlled Estimation

we now relax the assumption of complete detection and take the more
realistic view that IRS examiners fail to'détect evasion in some  case. Our
discussion draws on a more extensive treatment in Feinstein (1986a).

Figure 2 jllustrates the varjation in detection rates amongst the 44
examiners with 15 or more cases in our sample. Amongst these examiners
evasion was detected on 55% of all returns audited. As can be seen the
variation in detection rate§ amongst the examiners is substantial. which
suggests that modeling the detection process is impurtaht. of course figure 2

is too simple, because it does not control for the differences in the types of
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tuXpeVers assigned to different examiners. The Deteciion tontrolled
Estimation (DCE) method which we now present does control simultaneous:y for
variations in taxpayer and exapiner characteristics.

we first derive toe binary choice version »f the DCE estimator. As a
simplificution we ussume that when detection does occur jt is complete, so
that the examiner uncovers the full extent of evasion.-

Taxpaycr returns fall into two disjoint sets: the set A, which
consists of returns for which evasion has been fully detected: and the set Ac,
which consists of returns for which evasion has not been detected. To derive
the estimator, consider first returns in A. For return i to fall in A two
events must have occurted in successidn. Firstly, filer i must have chosen to
commit evasion, an event which occurs with probability Q(xlis]), Secondly,
the IRS examiner assigned to return i, whom we will call examiner j, must have
successfully detected the evasion. Previous analysts have implicitly assumed
that this detection probability is one, but the detection model of section 1
allows us to relax this assumption and to calculate the detection probability
explicitly as G(XZin~uj). Assuming that the errors €,. of the evasion
equation and € of the detection process are independent of one another, the

probability of the two events occurring in succession is:

"“"1151)0(21“’“3') (15)

Next consider a return in the set‘Ai. Evasion has not been detected
on this return, but that does not mean that evasion has not occurred. Returns
in A® fall into two classes: those for which evasion was not committed, and
those for which evasion was committed but not detected. The inability to
distinguish between these two classes of returns is at the heart of the
nondetection problem. Fortunately, the technique of Maximum Likelihood can
still be applied to returns in AS. First the probability of the filer not

committing evasion is calculated. Then the probability of the filer



comn;lting s vasion which is pot getocrted 1s cadcr dited Finer Iy these *wo
disjeint prubabilities are summed to give the overall probability of the
return felling in AC.  The probubility of no evasion is just 1- ¢() E ) and

the probability that evasion was committed and not detected is:

TENURTIERIEN SUN) Lo

Collectiug terms. the probability of the return falling into AC is:

1-¢(x, By1 = $(x,,8,)[1-6Glz;n-u; B . (17)

= 1 - ’(x]iBJ)G(:in‘“j)

Combining (15) and (17) together vields the DCE log Jikelihood of the entire
sample:
L ='Z ]oc[é(xliel)c(zinouj)] + ¥ lng[l - & ]181)6(2 LA )] (18)
JEA )CA
The DCE methud extends to the bivariate tobit model of evasion in a
straighforward manner. We assume that €3 is independent of both €, and €,;-
For returns in the set A, the probability of detected evasion in the amount

Yﬁi is Q(xll l)o 2xG(z =Y ). where d o Was defined in Section I and depends

on Yoj. For returns in the sct A . the probability of no evasion is 1-

-

é(x 1i 1) while the probability of undetected evasion is:

EO $(x 1i 1)¢ 21[1 -G(z; n*u 1] dv, (19)

where 6.21 again depends on YZj' The integral in (19) arises because the
quantity Y, , of evasion is unobservable (since it is not detected). As long
as the probability of detection G(zin-uj) is independent of the amount of
evasion Y”i (notice that the detection probubility may still depend upon

examiner j's expectatxon of \2 }, an assumption which we will maintain, (19)

simplifies to §(x,  8,)[1-G(z M+ )]. since the integral of ¢ ,q is one.
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Collecting terms, the probability of return i falling 1in Al s

1"). 2 & 40 } &t U
¢! :151)C(zxn uJ)

just as in the binary chuice casc. The Jlog likelihood of the entire sample
for the bivariate tobjit DCE js theu:
=
L« T Jogléln, 8.)¢ ,.Glz.m-u )] + L Jog[1-¢(x;f 1G(z . m-u;) 1 120)
icA 1i%1 2i i J ieat 1171 i J
Equation (20) could he estimated directly. Instead, we exploit the fact that
the binary choice estimates of 81. n. and the uj'S based on eguation (18) arc
also consistent estimates of these parameters in the bivariate tobit midel
(26). The proof of this proposition follows directly upon integrating each

term of the log likelihood in (20) over positive quantities of evasion --

*
Y ooy integrates to one, and the remaining terms are not affected by the

integral. hence (20) becomes exactly (18).14 Therefore we use the binary
choice estimates of 81 and of the parameters of the detection process as

E
weights in (20), and estimate only over the parameters Bz. g,. and p of ¢ 2f-

Detection controlled estimation has several substantive benefits.
First, it corrects for biases which may arise when nondetection is ignored.
For example, if higher income taxpayers are systematically_assigned better
quality IRS examiners, their detected evasion rate will be a larger {raction
of their true evasion rate than is the case for lower income filers. Non-
detection controlled procedures, which implicitly set the detection rate G to
1 and use the detected evasion rate as a proxy for the true rate, will

overestimate the relationship between income and evasion.

14This result is similar to the carlier well know result quoted in Section I.

that the binary choice estimates of B ure consistent for this same parameter

in the full bivariate tobit model of evasion. See Amemiya for'a proof of the

related proposition that probitl estimates uare consistent for the parameters of
a tobit model, up to a scaling factor.
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Second. the DZE method sllows us to investigate a number of bypotheses
about the IRS audit process. Likelihood Katiu Tests which compare the fit of
the DCE models iu equations (7%, «nd (20) to the original non-detection
~ontrolled versions of these models allow us to determine whether or uot
nondetection is a scrijous problem in the data. Likelihood R1ti6 Tests which
compare DCE models which include examiner fixed effects uj to DCE models whicl
omjt these effects test for the presence of significant statistical varjation
amongst examiners in detection wbilities.

Lastl]y, an Important byproduct of the DCE method is an estimate of the
incidence and extent of undetected evasion. Let N be the total nuwber of
returns in the sample, and NA be thevﬁumber in A. Bayes' Law allows us to
calculate the probability that evasion has been committed but not detected on

return i in A€ ae:

Wy = ¢(x1j’a‘1)[1-c_<zi’r‘1¢’ﬁj)]/[1-¢(x“’61)0(zﬁx*ﬁj‘,] (21)

where hats denote the Maximum Likelihood Estimates. A consistent estimate of

the incidence of undetected evasion in the population is then:

(1/N) T
icA

:i (22)
and the total incidence of evasion is the sum of (22) plus the rate of
detected evasion, NA/N. To estimate the dollar value of undetected evasion

we must calculate

r AT 23
the conditional expectation of the extent of evasion given that evasion has
occured, as defined in {5)". A consistent estimate of the extent of
undetected evasion is then

(1/X) 1§A:ir1 (24)
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The DCE wodelds which we have presented can be extended in a number of
ways. Following the discussion in Section I. the ditection equation can Le
expanded to include @ term reflecting the examiner's assessment of the
probability of evasion. To estimate the linear rational expectations version
of this model, the detection probability G(zin-“j) is mudificd to
G(Zin*uj~8¢lx1j81)). but otherwise egquations (18) and (20) remain unchanged.

Equations 11g) (and (20)) become slightly wmore complex when X, (and
Xz) includes variables which evauers misrepresent. 1In particular. Xy will
typicaily .clude the taxpayer's true income, and may well include his
marginal tax rate, which is cu]culat;d at his true income. For taxpaycer's who
commit evasion reported income falls short of true income. Of course, when
the IRS detccts the evasion true income is fully observable, and previous
analysts, relyirg on the assumption that all evasion is detected, have been
content to use the IRS' estimate. However, when evasion goes undetected true
income remains hidden. As a rudimentary solution to this problem we have
estimated a binary cl.oice DCE model in which the ordinary bivariate tobit
estimates are used to scale up income for those taxpayers who‘are not caught
evading: we add to reported income a term which represents the expectation of

evasion given that it occcurs. Equation (17) is then modified to:
.
1-4(x ;8,) « &(xyy 8,)(1-G(z;N+5)] (25)

t 3
where X5 includes the projected estimate of true income given that evasion

has occured, and the original X, remzins appropriate for the first term,

which refers to the probability of no evasion.

The DCE method can also be extended to the case in which the detection
error is correlated with thé evasjion errors tli and €sj (see Feinstein (1986a)
for related methods). However, even in the case of joint normality this leads
to a trijvariate normal likelihood density, which is computatjonally burdensome

to evaluate. Hence we have not explored estimation of these models.
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fombining Error Correction_and Detection Contrulled Frxtimation

we can combine the techniques discussea above to produce estimates
which are both error corrected and detection controlled.  We describe the
steps necessary to produce these estimates here in the text. and provide a
more forma) development in the appendix. We assume that, within the TCMP
sample of examined returns, errors uare alwoys detected, since they'nre
computational mistakes made directly on the taxpayer's return, with no attempt
at concealment. Returns then fall into 3 categories: apparent understatement
of tax liability, due either to error or detected evasion; apparently correct
statement, meaning that no errors were committed and no evasion detected: and
apparent overstatement of liability, due to a committed error, with no evasion
detected. In the binary choice case the error corrector weights are estimated
via equation (14), and are used as weights in an expanded detection controlled
likelihood which allows for all three categories of returns. The bivariate
tobit DCE uses us weights the tobit error corrector estimates and the binary
choice error corrected and detection controlled estimates, and maximizes a

likelihood only over the parameters of ¢‘2,



Sectjon IV - Empiric.] KResults

we present our resulte in the ~ollowing order. First we present
ectimiates of the bhinary choice {(probit) models of evasjon, cengidering four
principal models in Table 2 and a few extensijons in Table 4. We discuss the
estimates in Table 2 in some detajl, and also pay a good deal of attention tu
the detertion conirolled estimates of both Tables 2 and 4, providing
histograms of the examiners' implied detection rates and reporting test
statistics which demonstrate that nondetection is a significant problem in the
data. Finelly, Table 5 provides estimates of the evasion probabjlities
predicted by our models for typical filers. Second, we present estimates of
the bivariate tobit models. Table 6 reports estimates of the.d models
analogous o those in Table 2, and Table 7 provides predictions of the likely
extent of evasion for typical filers who choose to evade.

Table 2 presents results fof the four principle binary choice models:
(1) Siandard Probit, (2) Error Corrected Probit (EC), (3) Detection
Controlled Probit (DCE), and (4) Simulteneously Error Corrected and Detection
Controlled Probit (ECDCE). Coefficient signs are similar across all four
models, though exact magnitudes vary. Table 3 presents estimates of the error
corrector functions used to form weights in EC and ECDCE: both the probit and
tobit error correcto:s are displayed.

Collectively, the four models in Table 2 suggest several broad
conclusions about the determinants of tax evasion. First, source of income is
apparently a more important factor than the absolute level of income. Filing
of & Schedule C form, which indicates that some income is derived from self-
employment, has a strong positive impact on the probability of evesion. The
Schedule C effect increases slightly when we correct for taxpéyer errors, and

increases dramatically (70%) when we control for nondetection, probably
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2: Bipaery Cheice Models

- Mode) 1 Model 11 Medel 111
(Basic) (EC) (DCE)
Constantl -3.18 ~-1.45 -1.19
(0.0345) (0.04G9) ({0.0446)
* - L 3
AG] -2.18E-06 -4 .37E-06 -3.96E-0D
2.02E-u7) (2.G3E-07) (G.56F-0G)
*x | 3 3
Marginal Tax 3.65 4 51 5.86
{(0.150}) {0.195) (0.455)
Capital Gains 7.54F-07 1.38E-06 2.15E-05
{3.50E-06) (1.25E-06) (4.315-05)
x i E
Schedule C 0.973 1.02 1.65
(0.0719) (0.0872) (0.354)
E ‘ =
Married 0.315 0.00726 0.519
(0.0294) (0.0386) (0.0639)
E 3
Farmer 0.315 0.316 0.427
(0.111) (0.155) (0.237)
 J | 3 =
Age 65+ -0.232 -0.261 -0.353
(0.0458) (0.0566) (0.0732)
Occ. Group 1 2.20E-03 .0480 -.127
{0.653) (0.172) {1.20)
= =
Occ. Group II 0.596 0.674 25.0
(.195) (-.143) (1.00)
Detection Eq.:
Constant2 0.549"
(0.052)
GS Grade 0.233
(0.148)
Log Likelihood -1365 -1840 -1275

Standard errors are in parentheses.

jndicates significance at 5e, on a two-sided test.

-1.74E-006
(4 .69E-0G)

'.l:
5.8%

(0.506)

3.48E-050
(6.26E-05)

*
-0.199
(0.0723)

E 3
0.693
(0.339)

-0.481"
(0.0878)

0.189
(1.74)

E 4
30.0
(1.00)

-0.0186
(0.0437)

0.168
(0.166)

-1756
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peceause Scheclie £ filers are better able tu conceal fucome end clain invalic
business expenses. Capitil gains income s also associated with & heightened
probnbility of evasion. and its effect increases i1n the EC and DCE models.

The coefficient on AGl (Adjugtud Gross Income) is uniformly negative.
The maguitude of the AGI voelficient is such that its numerical impact is
small over most uf the range of AGY. However, the marpginal tax raie
coefficient iy always positive, and increases an #11 the more sophisticated
models. There are two possible interpretatioas of the marginal tax rate
effect. One interpretation is that high marginal rates do encourage taxpavers
Lo evade. A second interpretation is that the murginal tax rote, which is a
convex function of income. is proxying for a nonlinear relationship between
income and the probability of vvasion. To investifate Lhis second possibility
we have fit models which include higher order pelynomial terms in AGI (AGI2
and AGI3). In the probit models these terms are insignificant and are not
presented. In the bivarijate tobit models presented below, however, these
terms are significant.‘and the coefficient on AGI jtself is positive and
significant, whereas the coefficient on the marginal tax rate is negative and
significant. Given this pattern of sign switches between the-two models, we
are not confident that the income and marginal rate effects can be untangled
from one arother. Overall. the combined effect is for increasing income to
significantly increase the probability of evasion in the binary choice models.
but to exert little effect on the extent of evasion, conditional on evasion
occuring. In the bivariate tobit models.

A second conclusion we draw from Table 2 is that certain socioeconumic
groups are considerably more likely to evade than others. Farm filers are
more likely to evade, and are also more likely to commit errors (see Table 3).
This could be due in part to the difficulty of determining a farm's income
stream for a given tax year. which would suggest that it is the nuture of

farmers' income sources which matters.. The farm coefficient increases in the
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DCT and LCLCL models. Huxerr. errt currection jowers its significance --
compare columns 1 aud 2. which slow @ drop of about $0% in the value of the
farm coefficient’'s t-ratic, lJeaving it only marginally significant.

Older (age 63+) filers seem Lo be uniformly less likely to evade than
vounger filers. This moy be because older filers are inherently wore honest
(a view held by muny IRS personnel}), or simply because vlder individuals.
especially those who are retired, possess Jess complex income putterns which
make evasion more difficult to conceal. This second view is reinforced by the
estimates of Table 3, which indicate that older filers are aisu less likely to
commit errors.

Married taxpayers seem to be Qicnificant]y more Jikely to evade than
single taxpayers in the busic probit model. EC, however. lowers the effect of
married status, rendering it statistically jnsignificant. While DCE raises
the marriage effect, the combination of DCE and EC is to make married filers
less likely to evade. This evidence suggests that married filers make more
mistakes than single filers, perhaps because of the added complexity of a
married person's return. This hypothesis is further supported by Table 3 --
married filers are significantly more likely to commit errors than single
filers.

The results of Table 2 also indicate that occupation groups 1 and 2
exhibit different evasion behavior than the general population. However, the
signs and magnitudes of the occupation grouﬁ dummies vary substantially across
the four models, which prevents us from reaching any strong conclusions about
the nature of these groups' evasion tendencies.

A third conclusion which emerges from Table 2 is that controlling for
nondetection, and allowing for variation in detection rates acCross IRS
examiners, is important. A Likelihood Ratic Test based on Models I and III of
Table 2 aliows a test of the null hypothesis that detection of evasijon is

complete amongst all IRS examiners. The Test Statistic is 180.0, which
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Tabde S:  Er:

-or Covrecticn lLouations

Model 1
(Probit)

Constant -1.14%
(0.0380)

AGL -4.253L-07
(9.08E-07)
*
Schedule € 0.571
(0.136)
3
Marrjcd 1.159
(0.0532)
t 3
Farmer -0.337
(0.149)
t 3
Ape 650+ -0.228
(0.0776)
Sigma -

Log Likelihood -472.2

Standard errors in parentheses.

indicates significance at the 5% level for a two-sided test.

Mode) 11
{Tobit)

-24¢€3
(109)

0.0107
(0.00144)

| 4
1164
(252)

L 4
15561

(131)

L 3
1437
(259)

331
(154)

=
1805
(57)

-3724
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strongly rejivcts the null (the 95% critical value of a xz(éﬂ) is €2.8) in
favor of the alternative con-lusion that detection is imperfect.

Tuble 4 presents a serjes of extensjons of the models in Table 2.
Model I is a detection controlled probjt without examiner effects. A
comparison of Model 1 of Table 4 with Table 2's Model 111 allows us 1o test
{1 the joint significance of the examiner fixed effect d mmjes. The Jog
Jikelihood for Model 1J1 of Table 2 is -1275. while that of Model 1 of Table 4
is -1382. The Likelihood Ratio Test Statistic f»r the joint significance of
the 44 examiner effects §s thus 234, while the 5% critical value for the
x2(44) distribution is 60.481. We thercfore strongly reject the hypothesis
that all examiners have the same effic&ency in detecting evasion in favor of
the hypothesis of differing detection abilities.

Figures 3 and 4 present the estimated examiner detection rates. The
upper half of each figure is the same as Figure 1, for the purposes of
comparison. The lower half of Figure 3 gives the estimated Aetection
probabilities for the 44 examiners assigned dummies, computed as Q(x21n+uj),
Notice that the estimated histogram has shifted to the right., as compared with
the raw histogram, with 12 examiners being placed in the 90-100% detection
probability class. This rivhtward shift is to be expected, because
controlling for nondetection can only raise an examiner's detection rate, not
decrease it. If we divide the N cases audited by an examiner into three
groups -- Nl cases in which evasion is detected, N2 cases in which evasijon
occurs but goes undetected, and N3 cases in which there is no evasion -- then
the raw detection rate is NI/N and the prediction from the DC model estimates
Nl/(N1+N2). Apart from sampling error, the second ratio must be at Jeast as
large as the first. Figure 4 gives the estimated detection prqbabilities from
Mudel IV of Table 2. Again, there is a shift to the right in the

distribution, this time more pronounced than in Figure 3.
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Aaditiovtu.

Probit Mndels

Yodel 1
(DCE-no)

({ixed effects)

Constantl -1.4¢
(0.05)
AGT 1.01£-06
1.32€-0G)

Marginal Tax :2.2"
(0.40)

Capital Guins 1 .7GE-03
(1.14E-04)

*
Schedule C 1.38
(0.42)

*
Murried 0.638
(0.146)

Farmer 0.23)
(0.795)
Aze (5= -0.7

Occ. Group I 2.99

occ. Group 11 1.92

Model 11
(DCE with)
(projection)

-G.2TE-06
{7.19FE-04)

&
2.4¢

{1.00)

1.86E-006
(1.70E-03}

-0.0324
(13.37)

0.714
(3397)

Model 111

(EC-DCE with)
(projection)

4.32E-05
{4.25E-07)

®
6.93
(0.G5)

»
-G.13FE-00
7.97E-06)

E g
1.43
(0.31)

-1.02
(0.12)

Mode]l TV
(D”E with)
{expectation)

-0.956
{0.052)

<
.
[ed -

OIS )

-4.280-07
GOF-07

1.28E-00
(2.72E-04)

{0.460)
Detection Eq.:
r
Consitant2 0.06351
(0.0199)
E 3
GS (irade 0.609
(0.096)

Evajer Probability

Log Likelihood -13€2

. Standard errors are in
indicates significance

L
-2.11 .
(0.009)

0.262"
(0.043)

-2823

parentheses.

-0.396
(0.036)

0.688
(0.167)

-3632

al 5% on a two-sided te<t

{1.04)

0.352
(0.545)

z
-5.89
(1.04)

-256
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The detection conttolled estimates also sllow us te eva.uate the
relationship between an examiner's GS grade and his detecticn rate. The
cocfficient on GS grade is positive in sll the detection controlled moddls,
which indicates that examiners with higher GS grades do perform better than
their lower-ranking colleapgues: but the coefficient js statistically
insignificant most of the time.

The remaining models in Table 4 ful) into two cateporjes. The [irst
category counsists ofvmodels Il and 111, which correct for the fact thut the
AGl (and wmarginal) tax rate) recorded for undetected evaders will be too Jow
(see Section I1I) by projecting the extent of understatement using the
standard bivarjiate tobit model estjmaics of Tuble 6. As can be seen, these
models are not well-identified, the likelihood surface being locally flat in
all directions around several 6f the coefficients. The second category, Mudel
IV, includes the predicted evasion probability of the filer as an argument of
the examiner's detection equation. Unfortunately, the estimated coeflficient
is of the wrong sign.

Table 5 contains estimated evasion probabilities for u variety of
“typical” filers, using the coefficients from Table 2. Comparing the first
two columns, we find that, for married filérs. error correction significantly
lovers the probability of evasion, while it makes much less difference for
single filers. The SchedQJe C filer has a'very high probability of evasion in
all models, as discussed above. And older filers have a uniformly low
probability of evasion, also as discussed above.

We now discuss estimates of the bivariate tobit models of evasion.
Table 6 presents estimates of four principle models, which are analogous to
those presented in Table 2: (1) Standard Bivariate Tobit, (2) Error
Corrected Bivariate Tobit (EC)., (3) Detection Contro]led.Bivariate Tobit
(DCE), and (4) Simultaneously Error Corrected and Detection Controlled

Bivarfate Tobit (ECDCE). The variable AGI has been divided by 100,000 as a
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Table 6 : Implied Frobabilities _of tvarion
for Representative Taxpavers.

Mode) 1 Mode] 31 Mode) 111 Model IV
(Simple Probit) (EC Probit) (DCE Proubit) (ECDCE Probit)

Marricad Filers:

$25000 AG! 0.497 0.336 0.422 0.506
$50000 AGI 0.736 0.627 0.471 0.861
$75000 AGT, 0.959 0.9:9 0.838 31.000

Sched "C" Filer

$30000 AGI., 0.671 0.520 0.605 0.825
Sched "F" Filer

$10000 AGI. 0.296 0.152 0.315 0.166
Age G5+

Single Filers:

$25000 AGI 0.517 0.508 0.448 0.788
$50000 AGI 0.704 0.721 0.405 . 0.948
$75000 AGI, 0.928 0.934 0.701 1.000

Sched "C" Flier

$30000 AGI, 0.702 0.705 0.653 0.962
Sched "F" Filer

~1

$100C0 AGI, 0.230 0.185 0.204 0.2
Age €5+ ..
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Tabic 6: Rivarijate Tobit Models
_Model 1 Model 11 Mude) 111
(Rasic) {EC) (DCE)
Constantl 1052.0 1466.C 973.¢
{n0.1) (19.2) (146.7)
AGI 3942.0° £862.0° 4008.0"
(219.4) (41.4) (652.9)
2 t 3 = L 3
AGI -3147.0 -1899.0 -1208.0
(78.7) (2.7) (282.2)
3 * ® 3
AGI 65.7 103.5 77.6
(4.8) (0.4) (16.8)
E 3 =
AGI>%40,000 137.8 208.7 222.1
(Dummy Var.) (53.8) (27.4) (141.1)
t 3 3 . =
Margina) Tax -5167.0 -7654.0 -5681.0
(256.1) (96.0) (712.7)
Capital Gains -6.97E-03 -4.52E-03 -6.23E-03
(3.7GE-03) (5.04E-04) (1.20E-02)
= t =
Schedule C 527.8 432.6 986.6
(51.7) (19.2) (103.5)
Married -48.2 -765.2" 73.1
(32.6) (16.7) (92.1)
1 3
Farmer 430.0 53.5 516.8
(69.7) (37.7) (179.9)
Age 65+ 32.8 -101.3" 0.93
(42.6) (23.5) (32.3)
Sigma 441.6 235.4 948.9
(79.6) (4.9) (86.9)
= 3
Rho 0.6 0.6 0.7
(1.34E-03) (7.17E-03) (.0187)
SSR 1.76F~09 3.10E+09 1.80E+09
No. Obs. 1237 1337 1337
. Standard errors are jn parentheses.

indicates significance at 5% on a two-sided test.

Model TV
(ECDCE)

12166.0
(58.6)

10640.0
(199.9)

‘-3387.0
(61.5)

188.1
(19.8)

-49.6
(32.9)

-12970.0
T

(359.7)

~6.98E-03
(7.39E-03)

749.3
(59.9)

-1285.0
(18.2)

228.7
(93.9)

-174.9
(58.4)

442.1
(14.0)

L 3
0.8
(.0143)

3.01E+09

1337
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normuzlization and the occupation dummies were found to be insignificant and
are omitted.

Just as in Table 2, coefficient sifns are similar mcross all four
podels in Table G, though magnitudes vary somewhat. Coefficient signs aud
relative magnitudes &ru also comparable tu snosce in the rcorresponding probit
models. excepl for the income and marginal tax rate effects. The cuef[itient
on AG] is now positive and highly significant, while that on the wmarpinal tax
rate is negative and strongly significant. Higher order AGI terms are also
sipnificant, supgesting o complex nonlinear relationship between jincome and
evasion in our sample. As we discussed earlier, these results in tandem with
the probit results indicute that jncoﬁe and marpginal rate effects cannot be
separately identified. As Table 7 (to be presented next) makes clear the
combined effect is for increasing income to increasc the extent of evasion,
just as it also increases the probability of evasion (Table 5). We note
that the correlation p between the probjt and tobit models jsApositive and
significantly different from zero in all models.

Table 7 provides estimates of the likely extent of evasion for typical
filers who choose to evade taxes, based on the numbers in Table 6. Notice
that income exerts a mild effect and occasionally negative effect on the
extent of evasion: a married filer with $50.000 income evades $719. while his
counterpart with $25,000 evades $855. Sour?e of income exerts a consideéably
stronger impact on the extent of evasion."Thus a married Schedule C filer
with net income of $75,000 evades $1467, which is roughly twice the
corresponding amount for the non-Schedule C filer. The magnitude of evasion
also varies considerably amongst different socioeconomic groups; it is

especially high for farmers, and is higher for single filers than for married

filers.
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~alle T : Conditional Expectatjor of the Lxtent of Evesion
for Representative Taxpavers.

Model 1 Mode) 11 Mode] 111 Mode] TV
(Simple Tobit) (EC Tobit) (nC Tolit) (FCNC Tobit)

Murried Filers:
$25000 AGI $655 321 $1271 $457
$50000 AGI $71¢9 $208 $1165 $227
$75000 AG],
Sched "C" Filer 1467 $962 $1964 $1346
$30000 AGI, i
Sched "F" Filer $1162 $284 $1494 $474
$10000 AGI,
Age 65+ $911 §233 $1354 $231
Single Filers:
$25000 AGI $484 $292 $838 $390
$50000 AGI $533 $400 $937 $399
$75000 AGIT,
Sched "C" Filer $1478 $1649 $1963 $2500
$30000 AGI,
Sched "F" Filer $677 $220 $966 $386

$10000 AGI.
Age 65+ $849 $682 - $1290 $986

- e —————————— e = e
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Sectjon \ vrpjections.

we use the estimates in Table 2 to investigate the likely incidence of
tax evasjon under several recent and anticipated U.S. tax systems.  We do not
present estimates of the extent uf evasion under these tax regimes hecause wo
arce not confident that separate effects of the margina) tax rate and income
are identified in the bLivariate tobit models of Table 6.15 projections based
on the staundard probit mode] wre presented in Tiule <, while those based on
the more sophisticated ECHCE mode] are presented in Table 9. 1n evach case the
income levels in the leftnost columnbare in 1982 dollars. Looking at the
third line of Table €. we ask "What is the probability that a married joint
filer with an income equivalent to $75000 at 1982 prices and some income
{$5000) derived from a sole proprietorship {schedule C income) would evadce
taxes in 1980, 1985 and 19%£7" We see that the probability falls from 0.97 to
0.87. The three years in the tables were chosen to represent three distinct
stages in the recent history of the U.S. tax system. First, in 1980, marginal
rates ranged from 14% to 70%. The tax reform of 1981 cut ratés progressive]y,
and the 1985 column repres~nts the conclusion of this reform. In that year,
marginal rates ran from 11% to 50%. In 1986, the Tax Reform Act was passed.
Its provisions will come fully into force in 1988, which is why 1988 was chose
as the third column. In 1988 there will be only three marginal tax rates: an
initial rate of 15%, & higher rate of 28%, and a penalty rate of 33% that will
apply to income jin a certain range -- $43.150 to $89,560 of taxable income for
a single filer -- and which is designed to bring the average tax rate up
towards the marginal rate of 28%.

In both tables the jncidence of evasion falls from 1980 to 1988. Table

g presents estimates which have been corrected for taxpayer errors and

15
The estimated extent of evasjon increases as the tax system moves towards
Jower marginal rates --- contrary to what we expect.
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Talile & : Predicted Frohabilities of Fvesrjon under Different Tax Svstens
Bac:Cc Probit Models

1980 1985 1988
Married Filers:
£25000 AG) 0.49 0.49 0.25
$30000 AG! 0.73 0.G66 : 0.51
$75000 AGY,"C” Filer 0.97 0.93 0.87
$30000 AGI,"F" Filer 0.66 0.66 0.4%
$310000 AGY., Age G5 : 0.30 0.27 0.26
Sinple Tilers:
$25000 AGI 0.51 0.44 .43
$50000 AGIl 0.77 0.509 0.46
$75000 AGl,"C" Filer 0.97 0.91 0.79
$30000 AGI,"F" Filer 0.69 _ 0.62 0.53

$10000 AGI, Age 65+ 0.23 0.20 0.19
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Tax Svstems

Married Filers:

$25000 AG]

$50000 AGI

75000 AGI."C™ Fil'r
$30000 AGI."F" Filer
$10000 AG]. Apc G5-
Sinple Filers:

25000 AGI

$50000 AGI

$75000 AGI,"C" Filer
$30000 AGI,"F" Filer

$10000 AGI, Age 65+

ECDHC Probit Models

1980

0.

Q.

.00

.96

.28

1.00

0.
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npondetection. A married filer with & §50000-equivalernt income experiences a

decline tfrom 0.94 to 0.90 in his evasion probabil.ity and his unmarried
counterpart experiences a decline from 0.97 to 0.57. Al very Jow incomes, the
effect of the reforms is much less marked. reflecting the comparatively small
changes in parginal rates faced.

The detection cuntrolled estimates of evasion alsu allow us to
calculate the incidence and extent of undetected evasion in the 1882 U.S.
filing population. TlLese projections are calculated us.ng the formulae
presented in the subscction "Detection Controlled Estimztion™ of Section I1]
The projections are based on the wbighted sample and have been scu:led-up by
the ratio of the size of our samp]e'tn Lthe overall TCMP sample; hence they
fully reflect the U.S. taxpaying population. The DCE probit model predirts
15.5 mil)ion undetected evaders (16% of all filers), while the ECDCE probit
model predicts 14.7 million (15%).

The bivariate tobit ECDCE model predicts the dollar value of
unreported taxable income by filers to be $62 billion, a number which is large
but comparable to previous IRS estimates.16 The assumptions under which this
estimate were derived are: ‘1) that all taxpayer errors are detected -- these
errors are screened out of this estimate; and (2).that when evasion is
detected, its full extent is uncovered, which suggests that the $62 billion is
something of a lower bound on actual unreported income. As a point of
comparison, the aggregate value of detectqq'unreported income is $81 billion,
so that the ratio of undetected to detected unreported income is .77 to 1.

Our multiplier of .77 is one piece of the IRS multiplier of 3.28 estimated in

the IRP study (see the introduction).

G .
! The DCE mode) yields an estimate of undetected evasion of only $9.8
billion.
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Section V1 : Conclusions.

In lh§s paper we have presented a comprehensive microeconometric
analysis of income taX evasion. We have paid puriicu]ar attention go two
important econometric issues: taxpaver errors, and the fact that not all
evasion is detected., We have also extended the traditionas) tobit analysis of
evasion Lo a move general bivariate model in whizh the filer’s decision
whether or not to evade is evaluated separately from his decision of how much
to evade.

we draw three main conclusxjons from our work. First, the sources of
income -- as opposed to the level of income -- are major determinants of
evasion, presumably because different types of incomc offer very different
possibilities for evasion. Second, the combined effect of income and the
marrinal tax rate is a positive and significant effect on the probability of
evasion, but on}y a weuk effect §n the conditional extent of evasion. Third,
there is substantial variation amongst IRS examiners in detection rates, and
shere is reason to believe that much evasion goes undetected - perhaps as many
as 15 million filers evaded taxes in 1982 but were not canght..

ve hope, in the future, to extend our work, particularly to allow for
fractional detection - the case in which IRS examiners only detect a fraction
of the true evasion when they find aﬁy at all. We also look forward to
research that estimates separate evasion and detection equations for different
types of income (e.g. capital gains), and to models whiéh are more explicitly

derived from expected utility theory.
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Appendix

In this appendix we derive a number of statistical models discussed .n
section III.

Crror Currected Kivariaste Tobil

Let the probability of a taxpayer committing an error in the amount >
(¢cither posjtive or negative) be (1723410 )h((x-vw)_nl), aué the probuability
of no error be 1-H. we continue to assume'that when evasion occurs. it s
ulways of substantiully Jarper marnj tude thun any error which may occur, o
that cross-terms allowing for both evasion and error can be subsumed into
Lerms vllowing only for evasion (eyuivalently we could ascume that the
probability o: both an error and evasion is small). As fn the binary choive
case roeturns jull into 3 classes: understatement of tax Jiubility, correct
statement, and overstatement. The probability of a misstatement X OU correct
statement is then:

P(understatement X) = ¢1°.2 ‘~(1'41‘(1/2)(]/0h)h (A1)
P(correct statement) = (1-01)(1-H)
p{overstatement xX) = (I-QI)(]/Z)(I/Oh)h

%
where &. is the binary choice probability of evasion, ¢ , is, as defined in
Section 1, the conditional probability of evasion in the amount x, and h is

the probability of an error in the amount X. Restricting analysis to only the
Jast two classes of returns, it is easy to see that

P(correct|correct or overstatement) = (1-H)/[1-H/2] (A2)
p(over|correct or overstatement) = (1/2)(1/Gh)h/[1-H/2]

since the integral of (1/2)(1/01) over all positive x is H/2. Therefore just
as in the binary choice case the error probabilities can be estimated in a
first stage without estimating evasion rates, although in this case the
correct estimation procedure is a modified tobit rather than a modified probit
{note that the probit error corrector estimates from the binary choice
procedure are consistent for ¥ up to a scale facor O.).

Now return to (Al). Integrating the probability of understatement
over all understatements greater than O, and the probability of overstatement
over all overstatements greater than O, we recover the binary choice version
of (A1), which is equa;ion (14) in the teXt (this follows from two facts:
that the integral of ¢ _ is 1: and that the integral of (1/2)(1/0,)h is H/2).
This demonstrates that'%he error corrected estimates of ¢. from the binary
choice case remain consistent for the error corrected bivariate tobit, just as
in the usual case.

Finally, then, the error corrected bjvarjate tobit can be estimated
using the tobit error corrector weights h nnd'the binary choice weights 01_
estimating (Al) only over the parameters of ¢ 2

Combining Error Correction and Detection Controlled Estimation

We suppose that errors are always detected, as discussed in the text.
We continue to summarize the probability that evasion §s detected by

G(Z§n4u,). we also continue to assume that if an error is commjtted and
evasion’is committed and detected, the magnitude of the evasion outweighs that
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of the error. Returns th o fall into 3 (lasses: detected understatemcnt of

* “lisbility. nu detected misstatement. or detected overstaten=nl. The bLinary

choice version of this model ussociates the following probabiilitics with these
three outcomes:

P(understatement) = G¢] - [(]~G)¢1 - (]-Ql)]n/z (AZ)
P(correct statement) = (1-¢])(1-") + (]-c)¢1(1-u)
P(overstatement) = (1-+l)u/: < (1-G)¢,H2

I is euasy to show that the cond.tiona) likelihood of a returs falling into
each of the jast two clas=ses (conditional on it having fallen ‘nto one of
these two) §is independent of G and & : therefore the orjginal probit error
correcting weights contirue to be vuiiﬁ for this mode). 1ue parameters of 41
and G are then estimated jointly over all three classes.

Estimation of the bivariate tobit version of this madel s anulopous
and we do not discuss ijt.



