An Econometric Analysis of Income Tax Evasion and Its Detection

CORRECTION

There is a mistake in the original paper in Equation (4) and the following Equation (5).
These equations have in common an integral expression that refers to the likelihood of
undetected evasion. A Jacobian term is missing from the integrand of this expression.
Brian Erard and I discovered this a few years ago and I want to be make the correction
publically known. I am indebted to Brian for helping to identify the problem and work
out the solution.

In the paper, Y; represents detected income for case i, y; is true income, and s; is the
detection rate, a fraction between zero and one. The model is formulated in terms of y;
and s;, but it is detected income Y; that is observed, where

Yi = si *y.
The integral expression in Equation (4) of the paper (and also in Equation (5)) is evaluated
over all possible combinations of s; (from zero to one) and y; (greater than Y;) that yield

the observed value of Y;. Specifically, s; has been set equal to Y;/y; in the integrand.
Formally, this represents the following change of variables:

S; = Yz‘/ Yi
Yi = Yi.
The Jacobian matrix associated with this transformation is

(1{)311- —Yil/yf) '

The Jacobian is defined as the determinant of this matrix, which is just 1/y;. The integral
expression in equations (4) and (5) of the paper should be multiplied by the (absolute
value of) the Jacobian term, yielding

/1 1, (y—Xhﬂl) 1 (b((Yi/y)—Xziﬂz) dy.
0o 01 o1 o2y 02

One additional comment. In the paper the integral is formulated over true income y;.
Brian has suggested that in many cases it may be preferable to formulate the integral
in terms of s;. The reason is that s; runs over the bounded interval (0,1), whereas as
formulated in the paper the integral runs over the unbounded interval (Y;, 00). Again the
Jacobian must be worked out for this alternative formulation and it is just 1/s;. Under
this formulation, the integral expression in equations (4) and (5) of the paper is replaced

by
/1 1 (b((Yi/S)—Xu&)i(b(S—Xzzﬂz) s,
0o 018 01 02 02

The paper follows.
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This article presents an econometric analysis of income tax evasion and its detection based
on individual-level data drawn from the Internal Revenue Service 1982 and 1985 Taxpayer
Compliance Measurement Programs. I specify a model consisting of two equations: the first
measures the extent of evasion; the second, the fraction of evasion detected. The empirical
analysis explores the effects of income, the marginal tax rate, and various socioeconomic
characteristics on filer evasion behavior, and it assesses the variability in detection rates
among IRS examiners. Finally, I use the empirical estimates to construct new estimates of
the income tax gap; the new estimates are very close to the previous IRS estimates.

1. Introduction

B In the United States, income tax evasion is one of the most widespread economic crimes.
The economic costs of evasion are numerous; two of the most important costs are the lost
government revenues, which must be recovered through less efficient tax programs, and the
inequity between evaders and honest filers. Effective control of income tax evasion requires
answering a number of empirical questions: How much total evasion exists? Which socio-
economic groups evade most? What is the relationship between income, the marginal tax
rate, and evasion? How might Internal Revenue Service (IRS) examination practices be
improved?

Answering these questions requires addressing a fundamental statistical problem of
nondetection, which arises because not all evasion is detected and recorded in data. The
problem of nondetection makes some evaders appear honest, and other evaders appear to
cheat less than is actually the case. In turn, these misclassifications can bias estimates of the
overall extent of evasion and, when some filer categories are assigned systematically better
auditors than others, can bias estimates of the relative evasion propensities of different
socioeconomic groups.

This article presents an econometric analysis of income tax evasion based on individual-
level data drawn from the Internal Revenue Service (IRS) 1982 and 1985 Taxpayer Com-
pliance Measurement Programs (TCMPs). The analysis controls for the problem of non-
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detection by explicitly incorporating a detection process into the model and allowing for
the variation (heterogeneity ) in detection rates among IRS examiners. In addition to studying
the IRS detection process, the analysis focuses on two topics closely related to the policy
issues mentioned above. First, the empirical results provide estimates of the effects of income,
the marginal tax rate, and various socioeconomic characteristics on filer evasion behavior.
Second, the model results are used to develop a new method of estimating total evasion in
the United States, based on multipliers (which derive from the prior statistical analysis)
that extrapolate from the TCMP audit findings to the U.S. filer population as a whole.

I call the model developed in this article fractional detection; it belongs to the family
of detection controlled models first discussed in Feinstein (1989, 1990) and applied to tax
compliance by Alexander and Feinstein (1987) and Erard (1990). The fractional detection
model consists of two equations. The first specifies taxpayer compliance behavior, which is
assumed to follow a tobit form familiar from the work of Clotfelter (1983). The second is
a model of the detection process. All of the earlier work on detection controlled models
assumed the detection process to be “all or none”—that is, if evasion occurred it was assumed
that either all of it or none of it was detected. In contrast, the fractional detection model
makes the more realistic assumption that the IRS examiner can detect some fraction of the
evasion—thus he may detect all, none, or any fraction between zero and one of the evasion
present. I specify these two equations and derive the associated likelihood in the next section;
I also develop a number of extensions of the basic model.

Empirical results are presented and discussed at length in Section 4, but they may be
summarized as follows. First, the likelihood and magnitude of evasion increases with taxpayer
income and the marginal tax rate in both 1982 and 1985 when data from these years are
analyzed separately; however, it is difficult to separately identify the effect of the marginal
tax rate from the overall income effect in these regressions. When a pooled model is run
over both years, the two effects can be separated (because two filers with identical incomes
filing in the different years face different marginal tax rates); in the pooled model, income
per se exerts a very small and insignificant effect on evasion, while the marginal tax rate
exerts a substantial negative effect.

Second, a number of socioeconomic characteristics significantly affect the evasion de-
cision. Schedule C (own business) and F (farm) filers are much more likely to evade than
the average taxpayer. Individuals who claim the over-65 exemption (who may or may not
be retired) are less likely to evade and married individuals are more likely, while the effect
of capital gains on evasion is slight in most models. Dummy variables are created for two
occupational groups: high-visibility government administrators, judges, lawyers, and social
workers/social scientists; and medical professionals. Interestingly, the high-visibility group’s
evasion behavior changes substantially between 1982 and 1985. Although in 1982 this group
is significantly more likely than average to evade, in 1985 it is significantly less likely. One
possible explanation of this finding is that tax law changes enacted during the mid-1980s
reduced “‘gray areas” of evasion more open to members of this group than to other filers;
alternatively, changes in the economic environment may have altered their psychological
propensity to evade. In most models and in both years, medical professionals are generally
less likely to evade than the average nonmedical taxpayer of comparable income and social
status.

A third finding is that detection is imperfect, and variations in detection rates are at
least as important a source of the variation in detected evasion across cases as variation in
filer characteristics. To explore the variation in detection, individual effects are specified in
the detection equation for those examiners in each year auditing 15 or more cases in the
sample (43 examiners in each year). Collectively, these effects are highly significant, and
they indicate considerable heterogeneity among examiners. Overall, the average examiner’s
detection rate is approximately 50% in both 1982 and 1985. These estimates of absolute
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detection rates must be accepted with caution, largely because of statistical issues of iden-
tification, which are discussed in Section 6; if the estimates are correct, they indicate that
for every dollar of evasion, approximately 50 cents is detected.

The final stage in the analysis uses the empirical results to construct multipliers, which
provide a means of estimating total evasion in the U.S. filer population, called the tax gap.
(For this purpose total evasion is defined as total net taxable income underreported.) The
most reliable multiplier estimates are computed by forming a weighted (by caseload) average
of the examiners’ detection rates, and are 1.94 (with a 90% confidence interval of +.42) for
the 1982 estimates and 1.96 (+.49) for the 1985 estimates. Thus, according to the 1985
estimates, if the TCMP audits uncovered the equivalent of $.X of detected evasion in the
population, the estimate of total evasion would be $1.96 X.

Based on these multipliers, the new tax gap estimates are $83.7 billion (with a 90%
confidence interval of +$9.5 billion) in 1987, and $63.4 billion (7.8 billion) in 1982.
These new estimates are nearly identical to the previous IRS estimates.

The remainder of the article is organized as follows. The next section specifies models,
and Section 3 describes the data and provides summary statistics. Section 4 presents the
empirical results, Section 5 presents the multiplier calculations and tax gap estimates, and
Section 6 discusses limitations and extensions of this work. The Appendix contains the
derivation of a particularly complex extension of the basic model.

2. Models

B The econometric model consists of two equations, one referring to the taxpayer’s com-
pliance decision, and the other to the IRS detection process. Before specifying this model,
it may be helpful to remark briefly on the behavioral assumptions that underlie it.

The analysis of compliance rests on the assumption that individual taxpayers make
the decision whether or not to evade income taxes in a rational and consistent fashion.
Thus certain characteristics will tend to make evasion more attractive; for example, wealthier
taxpayers may be less risk averse and more willing to evade, while older taxpayers may be
more risk averse and less likely to evade. To quantify such effects, an evasion equation is
specified in which the dependent variable is evasion, and the independent variables include
whatever taxpayer attributes (such as income) are available in the data. Many filer char-
acteristics that affect the evasion decision are not recorded in the data. Asa result, we expect
that among a group of observationally similar taxpayers, some will evade and some will
not; this variation in behavior is captured by including a stochastic disturbance in the
evasion equation.

The analysis of detection allows for the possibility that the ability of IRS tax examiners
to detect evasion is imperfect and varies systematically from examiner to examiner. In
particular, each examiner who is assigned a sufficiently large number of cases possesses an
“individual effect,” which is his or her average level of detection. On any particular return,
the true extent of detection then fluctuates stochastically around this average rate. The
model thus assumes that there is both a systematic and an unsystematic component to
detection. In addition, the detection process is allowed to depend on other variables, such
as the nature of the return or the examiner’s GS (Government Service) grade.

O The extent of evasion. Denote by Y, the extent to which total net income is underreported
on return / in the sample. To specify a model of the extent of evasion, we adopt a conventional
latent variables formulation of the tobit model. Define Y ¥; to be a latent variable measuring
“propensity to evade.” Then

YTi=Xub + ey (1)
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and
Y, =YT if YE>0 (evasion in amount Y7;)
Y;=0 if Yh<o0 (no evasion),

where X|; includes any characteristics of filer i expected to affect his evasion decision; ¢; is
a stochastic disturbance assumed to be distributed N(0, ¢%); and B8, and ¢? are param-
eters to be estimated. Under the distributional assumption on ¢;;, the probability of no
evasion is 1 — ®(X,;8,/0,), and the probability of positive evasion in the amount y is

1 .
— ¢[(y — X1:81)/ 011, where ® and ¢ are the standard normal cumulative distribution and
0

density function, respectively.

O A model of fractional detection. If all evasion on a return were detected, model (1)
would be a valid specification of tax compliance and could be estimated directly, as in
Clotfelter (1983). However, this model assumes that data can be collected on which indi-
viduals evade their taxes, and how much. In fact, such data are not available. Instead, the
data (discussed below) record which individuals are detected evading, and how much is
detected. The distinction between total evasion and detected evasion is crucial whenever
IRS examiners are less than perfect in their ability to detect evasion, for then Yj; is itself
unobserved. In particular, when detection is imperfect, some individuals who appear com-
pliant really possess a nonzero Y;; and have simply escaped detection; others may have
evaded much more than is apparent (their Yy; is larger than that recorded in the data).

To allow for the possibility of imperfect detection, Alexander and Feinstein (1987)
introduced a detection controlled model of the tax audit (see also Feinstein (1990) and
Erard (1990)).

In all of these earlier analyses, the detection process possessed the unrealistic property
of being ““all or none.” Specifically, conditional on a given filer underreporting net income
by an amount y, the detection process was assumed either to detect the full extent of the
evasion or to fail to detect any evasion whatsoever. Put differently, the detection process
had a binary choice character.

In contrast to this “all or none” specification, accumulated experience suggests that
frequently the audit process detects some, but not all, of the evasion on a given return. To
incorporate this observation into the econometric analysis, we introduce a model of fractional
detection. »

Let Y>; be the extent of detection on return i ( conditional on evasion having occurred ).
Conditional on Y;; > 0, define

Y3 = XaiB + & (2)
and
Y, =1 if Yi=1 (complete detection)
Y =0 if Y¥=<o0 (no detection)
Yo=Y5 if 0<Yr<l1 (detection of the fraction Y %; of evasion),

where X»; is a collection of explanatory variables expected to affect detection; ¢,; is a sto-
chastic disturbance assumed to be distributed N(0, ¢3); and ¢3 and $, are parameters to be
estimated.

According to equation (2), detection may be of three types: (i) complete detection of
all evasion on the ith return; (ii) failure to detect any of the evasion on the i/th return; and
(iii) detection of a fraction of the evasion on the ith return. Thus, for example, if Y 5; is
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realized as 1.5, all evasion is detected, while if Y 5; is realized as 0.3, 30% of the evasion is
detected.

Now suppose ¢; to be distributed independently of ¢;;. Then the probabilities associated
with these three categories are (i) complete detection:

XoifB — 1
Prob (e = 1 — Xyfs) = @(—262—) ;
02
(i1) no detection:
Xai
Prob (62,‘ < —le',Bz) =1- q)(ﬂ%) 5 and
[y

(iii) detection of the fraction 5, 0 < s < I:

Prob (e; = 5 — Xp,8,) = Uiz ¢(s—_X21—62) .

02

Notice that, unlike in usual probit analysis, category (1) and (ii) probabilities sum to less
than one. Note also that e,,’s distribution has only one free parameter, which severely
restricts flexibility. Future work might usefully explore a more flexible distribution: for
example, one that specified separate parameters for the probabilities of no detection and
complete detection. If X, lies between 0 and 1 and o, is small, detection of a fraction of
total evasion is most likely; conversely, if o, is large, all three categories possess substantial
probability of occurrence. If X5;3; is larger than 1, complete detection is always more than
50% likely, and is more likely the larger is X;;8, and the smaller is ay. If X583, is less than
0, no detection is most likely.

Data on the detection process has not usually been collected by the IRS; hence in the
empirical analysis that follows, X,; includes only an overall constant, an indicator of the
examiner’s GS grade, a measure of the complexity of the return, and, for those examiners
who perform a sufficient number of audits in the sample, an individual effect: if ex-
aminer j is assigned to the jth case, this effect is denoted .

Before continuing with the derivation, it is useful to point out a number of restrictions
in model (1). First, ¢;; and ¢,; are presumed independent. This restriction is inessential and
is relaxed below (a model allowing correlation between the errors is specified below after
the basic likelihood is derived ). Second, no possibility of false detection is allowed, in which
an examiner falsely claims to detect evasion when none is present. This assumption accords
with IRS “folklore,” but it would be interesting to investigate the importance of this as-
sumption to the findings obtained. Finally, identification of the parameter vectors 3; and
B- is an important statistical issue and is not always possible. This issue is discussed more
fully in Section 6 (see also Feinstein (1990)).

O Likelihood. Define the set A4 to consist of all those returns in the data for which some
evasion is detected, and define 4° to be the remaining returns for which no evasion is
detected. To derive the likelihood associated with observation i requires combining equations
(1) and (2) and distinguishing between returns in these two sets.

Suppose first that ; falls into 4°. Then either no evasion has occurred, or evasion has
occurred but has not been detected. That is,

likelihood = P (no evasion) + P (evasion)P (not detected )

-1 q)(Xnﬂl) +fwi¢(y_Xli61)[l _ @(ijﬂz)]dy. (3)
(2] 0 0 [o3] (o))
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Xoi . . .
The term 1 — @(Lﬁ%) may be placed outside the integral (this relies on the assumed
02

independence of ¢;; and e,;), so that

likelihood = 1 — @(Xl_fﬁl) + [ - q,(Xzzﬂz)] q>( Xl,-ﬁl)

0y 02 0
- q,(Xl,-m) (I)(Xziﬂz)’
[} 02

a form similar to the earlier “all or none” detection controlled models.
Next suppose that i falls in 4. There are now two possibilities: either all evasion was
detected, or some fraction was detected. Hence

1 = Xy X0y — 1
likelihood = -¢(Y b ‘)@( 22 )
(25}

01 G2

+fwi(b(y—xuﬁl)_g¢(n/y—X2iﬁz)dy, @

Y; 01 231 () (]

where Y; refers to the amount of evasion detected, and the integral represents the chances
of evasion in amount y greater than Y;, with the fraction Y;/y being detected, so that
detected evasion remains (y)(Y;/y) = Y;.

The log likelihood of the sample is then

L=3 1og[1—¢(M)¢(@)]+ 5 log[qu(Yi_Xliﬁl)q)(Xziﬂz—1)

icac gy 02 i€A o1 ! a3
© 1 - Xi; 1 Y./y— Xy
+f _¢(J’ 131)_¢( /Y Zﬁz)dy} (5)
Y; Oy (13} o2 02

and is maximized over the parameters (3;, 82, 1, 63).
Computational experience has indicated that equation (4) can be most accurately com-
puted if, recognizing that

y— Xubi = - - RS — (X=X B0V 20 + (=X ) 20— (V= X,uB1)/ 20°)
¢ e ! e )
[

Var Vor
it is rewritten

1

(3] 271'

o~ (Y= X11)%/207)

X [‘P(Xziﬁz/az) + foo o~ (1120 DIO=X1iB1)*~(Yi=X1if)?] 1 ¢(M)dy] ,

Y; 02 02

for which the log is

Y — Xu:b1)’
~log o, — 1/2 log (27) — %
1
+ log [CP(XZiﬁz/UZ) + fw e—(1/2Uf)[(y—X1il31)2—(Yi—Xliﬁl)zl l ¢(M)dy:| .
Y; () ()
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O Extensions. Let us briefly discuss two extensions of the basic model; both are estimated
below. First, the model can be extended to allow an arbitrary correlation p between ¢; and
;. The likelihood for those observations i for which no evasion is detected is then

Y T I B SO o4
1 q)[ o ]+L o d)((y Xlﬂl)/al)[l q)(azvl—_p—z)]dya

while the likelihood for those observations i for which evasion (in the quantity Y) is detected
is

1 (Y- X8 g—1 f+°° 1 (y—Xlﬁl) 1 [ Y/y—q]
— P + — dy,
gy ¢< gy ) [aﬂl—pz] Y 01¢ (1 GZVI—pZd) 62V1—p2 Y

where

o
q= X6, + ;‘2' o(y — X181).
1

Second, we note that if true income Z; is a component of X;, fully correct estimation
is complicated because Z; is only observed when detection is complete. As a result, the
explanatory variables in X;; (and X,; in some specifications ) are themselves not fully observed.
This issue was first raised by Alexander and Feinstein (1987), who suggested that it be
resolved by “projecting” true income based on the estimate of detection. In this article I
follow through on that suggestion. v

True income Z; equals income reported plus Y,;. If Y,; were observed, Z; could be
computed readily. Since Y7, is not observed, we must guess Z;, and we must do so in a
manner that is consistent with the remainder of the likelihood computation. Referring back
to equation (4), for returns in the set 4, the X|; inside the integral simply estimates Z; (one
of its components) as y + income reported (where y is the variable of integration ). Thus
for each possible value of detection, the corresponding value of true income is computed
and is substituted into the explanatory variables. For returns in the set A%, the integral in
equation (3) no longer collapses, so that for returns in this class, the likelihood becomes

Yy Xliﬂl)dy,

a0y

® 1
I = ®(X1;81/01) + [1 — ®(X2:62/02)] J; - 4’(
1
where again the estimate of Z; in X}, inside the integral is replaced by y + income reported.

O Disaggregation. All of the models discussed above focus on the total amount of evasion.
In fact, evasion occurs at the disaggregated level, line item by line item (see Klepper and
Nagin (1989) for an interesting discussion on this and related points). I do not propose
here to estimate evasion and detection rates by line item; however, the models can be readily
extended to handle the first step in this direction, which disaggregates the data into its two
principal components: underreported Adjusted Gross Income (AGI), and overstated de-
ductions (based on the decomposition, total net income equals AGI minus deductions).
The Appendix specifies the likelihood function for a model of this type that consists of four
equations: an evasion equation for underreported AGI; an evasion equation for overstated
deductions; a detection equation for detecting underreported AGI; and a detection equation
for detecting overstated deductions. The model assumes that the stochastic disturbances in
the two evasion equations are jointly normally distributed with correlation p, and that the
stochastic disturbances in the two detection equations are jointly normally distributed with
correlation p,. Errors across the evasion and detection equations are assumed uncorrelated.
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3. Data

B The empirical analysis is based on data from the 1982 and 1985 TCMP datasets, which
are described more fully in the IRS publications Income Tax Compliance Research, Estimates
Jor 1973-1981 (IRS, 1983) and Income Tax Compliance Research, Gross Tax Gap Estimates
and Projections for 1973 to 1992 (with Supporting Appendices) (IRS, 1988). The study
data are from four districts chosen to be geographically and socioeconomically representative
of the entire nation, and for each year all observations from each of these four districts were
included (however, in 1985 a small number (100) of randomly chosen observations were
dropped in order not to exceed computer internal memory limitations). All of the variables
used in the study come from the TCMP computer database maintained by the IRS, except
for the name of the examiner performing each examination, which was coded by hand from
the original TCMP checksheets.

Table I provides summary statistics of the data for each year. The 1982 data contains
2267 observations, and the 1985 data 3050 observations. The IRS has constructed a weighting
system that weights each observation according to the relative frequency of its taxpayer’s
characteristics in the U.S. filer population. All of the summary statistics, model estimates,
and multiplier calculations presented below are based on the weighted sample, unless oth-
erwise indicated. Some idea of the effect of weighting is gained by exploring the relative
frequencies of two socioeconomic groups, schedule C (own business) filers and schedule F
(farm) filers, both of which are viewed as higher-than-average evaders. For 1982, 32% of
the unweighted sample of returns filed a schedule C (724), but only 11% of the weighted
sample filed C. Similarly, 25% (570) of the unweighted sample filed schedule F, but only
3.2% of the weighted sample; similar figures apply for 1985. These findings are consistent
with the IRS’s stated intention of oversampling certain evasion-prone groups.

For 1982, 66% of the weighted sample was detected in understatement of total taxable
income. Similarly, 64% of the weighted 1985 sample was detected in understatement. The
average detected understatement of income per capita in 1982 was $1001 (1982 dollars);
of this evasion, 73% occurred in the form of understatement of adjusted gross income
(AGI), and the remainder in the form of overstatement of deductions. In 1985, average
total per capita detected understatement (income understatement plus deductions over-
statement ) was $1141 (1985 dollars), of which 87% derived from income understatement;
the fact that this fraction is larger in 1985 may well reflect clarifications and reductions in
deduction opportunities available under the new tax law.

The detection controlled methodology focuses attention on the examiners performing
TCMP audits. Further, consistency of the maximum likelihood procedure requires specifying

TABLE 1 Data Summary Statistics
1982 1985
TCMP TCMP
Number of Cases 2267 3050
Percentage of Cases Filing Schedule C 11% 11%
Percentage of Cases Filing Schedule F 3.2% 1.9%
Percentage of Cases Detected Understating Total Taxable Income 66% 64%
Per Capita Value of Detected Understatements of Total Taxable Income $1001 $1141
Percentage of Per Capita Detected Understatement Derived from
Income Understatement 73% 87%
Number of Examiners with 15 or More Cases 43 43
Their Weighted Caseload 44% 40%

All numbers except the first row refer to the weighted sample.
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individual examiner effects only for those examiners with a sufficiently large caseload in the
sample. For this study, individual effects were specified for examiners with 15 or more cases
(unweighted). As Table 1 indicates, there are 43 examiners in each year who fulfill this
criterion (however, across years they are not identical individuals), and they are responsible
for 44% of the caseload (weighted) in 1982 and 40% in 1985.

In order to summarize the raw data evidence on detection, raw detection rates were
computed for each of the 43 named examiners in each year. In this calculation an examiner’s
raw detection rate is defined to be the number of cases on which he detects evasion divided
by his total caseload (these numbers are unweighted). In each year, approximately half of
the examiners have raw detection rates above 60%, and half below. Further, the dispersion
in rates is substantial, with examiner rates spread from 25% to above 90%. Finally, the rates
are similar across the two years, with a slightly greater dispersion in 1982, and a slightly
higher mean in 1985.

While such raw detection rates are of mild interest, they suffer from several drawbacks.
Since not all filers evade, the raw detection rate may understate an examiner’s true rate.
Opposed to this effect, however, is the fact that the raw rate assumes that when an examiner
detects any evasion on a return, he has detected all the evasion—this is clearly an unwarranted
assumption (see the discussion of the fractional detection model above). While these two
effects act in opposite directions, there is no guarantee that they cancel each other out. A
further drawback to the raw rates is that they do not control for the socioeconomic char-
acteristics of different filers—hence a relatively good examiner assigned a caseload with a
low prevalence of evasion may appear to be relatively poor. In fact, a main point of the
detection controlled models is to control for filer characteristics simultaneously with examiner
effects. Overall, the raw rates suffer from significant drawbacks; the computed estimates
presented shortly are likely to be far more reliable.

The TCMP data are used to construct the following variables used in the analysis:

CONSTANT
AGI = Adjusted gross income (per exam) divided by 100,000 (if AGI is less than
zero, it is coded as zero).

AGI?
AGINEG = A dummy variable set to 1 if the filer has AGI (per exam) that is less than
$—10,000.
MTAX = Marginal tax rate for that year for that filer category, evaluated at AGI
(per exam).

MARRIAGE = A dummy variable set to 1 if the filer is married.
RETIRED = A dummy variable set to 1 if the filer checks the over-65 exemption status
box.
SCEDC = A dummy variable set to 1 if a schedule C form is filed.
FARM = A dummy variable set to 1 if a schedule F form is filed.

IDM = A dummy variable set to 1 if the filer belongs to the occupational group
Doctors (plus veterinarians in 1985).

IDH = A dummy variable set to 1 if the filer belongs to occupational groups Al
(Officials, Administrators, and Middle Managers in Public Administration
(Government)), D (Social Scientists, Social Workers, Religious Workers,
and Lawyers), or G (in 1982)/H (in 1985) (Entertainers, Artists, Writers,
and Athletes).

CAPGAINS = Dollar value of the amount of capital gains on the return (per exam).
NUMFORMS = The number of extra forms (including schedule C, schedule F, and capital
gains) filed.
GS GRADE = A dummy variable set to 1 if the examiner’s GS grade exceeds 11.
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As this list makes clear, a number of important variables were not included in the
study, either because they were not available on the TCMP database, were not able to be
provided by the IRS, or were not considered germane to the analysis. In particular, more
detailed socioeconomic variables, such as savings, home ownership, and the like, are not
reported on the tax return and not available. The audit probability facing a given taxpayer
is recorded in the data but is not available to researchers because the IRS considers it to be
a sensitive piece of information. This is unfortunate, since most theoretical models of com-
pliance (such as Graetz, Reinganum, and Wilde (1986)) stress the role of audit probabilities
in deterring evasion. In addition, the unavailability of this data makes it more difficult to
compare the micro-level results of this article to the aggregate analysis of Beron, Tauchen,
and Witte (1988). In the absence of audit probabilities, the compliance equation estimates
must be viewed as reduced-form coeflicients that summarize both the taxpayer’s proclivity
for evasion and his fear of detection. I hope that audit probabilities will be made available
to researchers, at least on a limited basis, in the future. Finally, I have not included data on
whether or not a given filer hired a paid preparer to assist in filing his or her return. Recently,
Erard (1990) has performed an extensive analysis of this topic, using methods similar to
those presented here; I refer the reader to his work for a full discussion.

4. Estimates

B Empirical results are presented as follows. Table 2 provides base case estimates (derived
from the likelihood in equation (5)) separately for 1982 and 1985 and for the pooled
sample. In combining the two years for the pooled estimation, 1985 dollar figures were
deflated to be expressed in 1982 dollars (the consumer price index was used for the deflation ).
In each of these models the dependent variable is total net taxable income underreported.
Table 3 provides two extensions of the basic model: the first extension introduces an arbitrary
correlation between the evasion and detection disturbances; the second extension corrects
for the problem of “true income” in the explanatory variables, using the income projection
method discussed earlier in Section 2. Finally, Table 4 presents estimates of the disaggregated
model, in which separate equations are specified for (i) underreported AGI, (ii) the detection
of underreported AGI, (iii) overstated deductions, and (iv) the detection of overstated
deductions; again, this model was discussed in Section 2 (and its likelihood is derived in
the Appendix). (The decomposition used here follows from the identity, taxable income
= AGI — deductions).

Referring to Table 2, consider first the estimates for years 1982 and 1985 separately.
Results are quite consistent across the two years with regard to the sign of the coefficients,
their significance, and their relative magnitudes; they do differ substantially in their absolute
magnitudes, a point I shall return to below. The coefficient on 4GI is positive in both models
in both years, and highly significant. The coefficient on AGI? is much smaller in magnitude,
though still significant at the 5% level; since the normalized 4G (divided by 100,000) is
generally less than one, AGI? is quite small—combined with its small coefficient, it exerts
little effect. In contrast, the marginal tax coefficient is positive, large, and significant in both
models. Collectively, these results suggest a relatively sharp positive relationship between
income and the frequency of evasion. However, these two models by themselves provide
little evidence on the relative impact of the marginal tax rate and income; the pooled model
to be discussed shortly does provide interesting evidence on this point. The final income-
related variable, AGINEG, is positive and significant—most likely it is picking up farmers
or others in special income situations with many opportunities to evade.

Coeflicients for the socioeconomic groups accord with prior expectations and findings
in Clotfelter (1983) and Alexander and Feinstein (1987). Thus schedule C and F filers are
significantly more likely to evade, perhaps because their complicated tax forms provide
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TABLE 2 Total Evasion and Its Detection: Fractional Detection Models
(Dependent Variable: Net Taxable Income Underreported)

Independent Model 1 Model 2 Model 3
Variable 1982 1985 Pooled
Evasion Equation:
CONSTANT —6175 (151) ~16160 (161) —.106 (160)
AGI 6717 (342)* 4957 (659)* .173 (382)
AGI? —277 (83.1)* —206.5 (94.4)* 181 (170)
AGINEG 9669 (464)* 28010 (2136)* 11620 (3774)*
MTAX 12550 (245)* 25550 (618)* —4872 (413)*
SCEDC 4400 (318)* 7554 (836)* 4408 (500)*
FARM 3247 (428)* 7243 (1985)* 3094 (877)*
RETIRED ~886.3 (315)* 488.4 (508) —3219 (279)*
IDM —4076 (2992) —655 (4238) 3596 (3758)
IDH 312.9(1233) —8997 (1851)* —4715 (925)*
CAPGAINS ~.00364 (.0193) .0579 (0204)* .0831 (0114)*
MARRIAGE 419.3 (210)* 3360 (240)* 2.63 (237)
Detection Equation:
CONSTANT 371 (.0170) .281 (.00557) .276 (.00610)
GS GRADE —.151 (.0185)* 134 (0171)* —.0366 (.00872)*
NUMFORMS 153 (.0139)* .0840 (.00986)* .199 (.00905)*
o 7450 1800 13000
eDET 24 .24 27
Log Likelihood —3364 —-5598 —9677

Standard errors are in parentheses.
* Statistically significant at 5% level.

more opportunities to conceal income and claim “gray area” deductions. Individuals who
claim the 65 and over exemption (who may or may not be retired) are significantly less
likely to evade in 1982 but insignificantly more likely to evade in 1985. Married individuals
are significantly more likely to evade; this finding was also reported in Alexander and Fein-
stein (1987), who suggested that the married return may be more complex and allow more
opportunities for evasion (it is also indicated there that married individuals commit more
mistakes in filling out their return).

Coefficients for the high-visibility group (IDH) and medical professionals (IDM) are
quite different across the two years and across models. In particular, the high-visibility group
is more likely to evade in 1982 (though the effect is insignificant ) and significantly less likely
to evade than the average comparable (in terms of income and other socioeconomic char-
acteristics) filer in 1985. Conversely, the medical professional group is less likely to evade
in both 1982 and 1985, but the coefficient is small and insignificant. It would be interesting
to investigate specific effects of the tax law changes enacted during this time that apply to
these groups, in order to see whether their incentives to evade have changed in a manner
consistent with the empirical results. Finally, the capital gains effect is significant only in
1985, at which time it is positive as expected.

Finally, consider estimates of the detection process. The GS GRADE coefficient is
negative and significant in 1982 and positive and significant in 1985, suggesting that the
relative quality of IRS senior examiners improved over the sample period. The coefficient
on NUMFORMS is positive and significant in both years; this runs contrary to intuition,
which would suggest that more complex returns (higher NUMFORMS') would pose more
difficult detection. There are at least two possible explanations for this effect. On the one
hand, examiners may “try harder” when faced with a more challenging return. On the other
hand, NUMFORMS may belong in both the evasion and detection equations, and its positive
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significance in the detection equation may be spurious, indicating greater evasion on more
complex returns. Unfortunately, testing this second hypothesis is difficult due to identification
problems (discussed in Section 6); hence the issue is not pursued further here.

Estimated at the mean value of NUMFORMS, the average detection rates are 50% in
1982 and 34% in 1985 for plain (GS below 12) examiners, and 37% and 52% for senior
examiners. Thus the overall average detection rate is quite similar across the two years. The
standard deviation in the detection process is estimated at .24 in both 1982 and 1985,
indicating a relatively tight detection range; one implication is that examiners are unlikely
to detect either all or none of the evasion on a return—they may be expected to detect
some part.

A comparison of the fractional detection model fit to the fit of a tobit model that
assumes complete detection provides a means of testing the hypothesis of complete and
homogeneous detection across returns. Such a comparison (not reported here, but available
on request from the author) strongly rejects the null hypothesis in both years.

Figure 1 displays the distribution of computed mean detection rates for the 43 examiners
in each year with estimated individual effects. The upward-pointing histogram refers to
1982, the downward-pointing histogram to 1985. These histograms indicate substantial
heterogeneity among the examiners in detection, even after controlling for the characteristics
of the filers they have been assigned. In turn, this suggests that improved training or em-
ployment screening might substantially increase audit yields.

Finally, return briefly to the evasion equation estimates in models 1 and 2. An ex-
amination of the absolute levels of the evasion equation coefficients indicates a substantial
difference between the two years, and it suggests problems in the tobit specification. The

FIGURE 1

DUAL HISTOGRAMS OF EXAMINER DETECTION RATES: TOTAL EVASION
COMPUTED BASED ON FRACTIONAL DETECTION ESTIMATES, 1982 AND 1985
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standard deviation ¢ is quite high in both years, and extremely high in 1985. The evasion
equation coefficients essentially scale with o, with the result that they are large, especially
in 1985. The most likely explanation of the large estimated variances is that the evader
population is highly skewed, with a few individuals evading very large amounts. Model fit
might be improved in either of two ways: (i) by specifying an alternative asymmetric dis-
tribution for the disturbance in the evasion equation, for example log-normal, or (ii) positing
a mixture of two distributions in the population. Hopefully the issue will be addressed in
future work.

Consider next the pooled model reported as model 3 in Table 2. Overall, the pooled
model fits the data significantly more poorly than the separate 1982 and 1985 models. While
most coefficient estimates for this model are similar to those arising in the separate models,
one important difference arises in the income and marginal tax coefficients in the evasion
equation. Since model 3 pools data from two years with quite different marginal tax rate
schedules, it allows some disentangling of two conceptually distinct but highly correlated
(within a year) effects: the effect of income on evasion and the effect of the marginal tax
rate on evasion. Specifically, two individuals possessing identical incomes but filing in dif-
ferent years face different marginal tax schedules. In the pooled model the effect of the
marginal tax rate is negative and highly significant, while the effect of income is essentially
zero. These results are sharply different from those in the separate years, and highly intuitive:
a higher marginal tax rate discourages evasion, while income has only a very small effect
on evasion. Figure 2 provides a histogram of computed examiner detection rates for the 86
examiners with individual effects in the pooled data (it was not possible to link examiners
across years). These rates are similar to but somewhat lower than those for the separate
years reported in Figure 1.

Table 3 provides estimates for two extensions to the basic fractional detection model.
These extensions were estimated only for the 1982 dataset. Model 4 in Table 3 provides

FIGURE 2

HISTOGRAM OF EXAMINER DETECTION RATES: TOTAL EVASION
COMPUTED BASED ON FRACTIONAL DETECTION ESTIMATES, POOLED SAMPLE
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TABLE 3 Total Evasion and Its Detection: Extensions; 1982 Estimates
(Dependent Variable: Net Taxable Income Underreported)

Independent Model 4 Model 5
Variable Correlation Income Projection

Evasion Equation:

CONSTANT —3261 (94.3) —3056 (76.4)
AGI 1159 (421)* 3469 (318)*
AGI? —52.2(78.1) —308.3 (121)
AGINEG 3530 (4336) 3438 (3317)
MTAX 7270 (432)* 6136 (383)*
SCEDC 842 (356)* 2380 (224)*
FARM 2210 (1025)* 1382 (401)*
RETIRED —1377 (297)* 4.705 (137)
IDM —2645 (2103) —2228 (1464)
IDH 221 (1141) —33.78 (676)
CAPGAINS .03521 (.0136)* .00201 (.0238)
MARRIAGE —189 (164) 495.7 (110)*

Detection Equation:
CONSTANT 131 (.0118) 411 (.0133)
GS GRADE 0544 (.0123)* ~.1487 (.0146)*
NUMFORMS — .1384 (.0138)*

I 7300 3300

oDET 27 .24

p 8

Log Likelihood —3582 -3282

* Statistically significant at 5% level.

estimates for a fractional detection model that allows arbitrary correlation p between the
stochastic disturbances in the evasion and detection equations. The parameter p maximizing
the likelihood function was found via grid search, and it is estimated to be .8. Hence a
greater propensity to evade is accompanied by a higher detection rate. This finding is intuitive:
if, for example, the examiner observes certain characteristics of the filer that are not included
in the evasion equation but correlate with evasion propensity, he is likely to increase the
intensity of his examination. Feinstein (1990) discusses one possible model that allows for
such “expectations simultaneity” between filer and examiner. Figure 3 provides computed
examiner detection rates for model 4. One difference between these rates and the earlier
rates in Figure 1 is that the dispersion among examiners has been substantially reduced:
apparently, at least some of the dispersion derived from omitting the possible impact of
compliance behavior on detection. Even in this case, however, the dispersion is substantial,
ranging from 40% to 70%. The remaining coefficient estimates in model 4 are similar to
those in model 1 and are not discussed further.

Model 5 in Table 3 presents estimates of a model incorporating the income projection
principle for estimating true income that was discussed in Section 2; Figure 3 provides the
accompanying histogram of examiner detection rates. Allowing for such projection has only
a modest impact on the coeflicient estimates; these estimates are not discussed further.

Finally, Table 4 provides estimates of the disaggregated model, which distinguishes
between underreported AGI and overstated deductions; Figure 4 provides the accompanying
histograms of computed detection rates. Again, these estimates are for the year 1982. A
number of features of these results deserve comment. Consider first the two evasion equations.
The overall magnitude of the evasion estimates is larger for underreported income than for
overstated deductions; this is to be expected, since the majority of evasion falls in the first
category. As in the earlier 1982 estimates in model 1, income is positive and significant for
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FIGURE 3

DUAL HISTOGRAMS OF EXAMINER DETECTION RATES: TOTAL EVASION
COMPUTED BASED ON FRACTIONAL DETECTION ESTIMATES, EXTENSIONS
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both types of evasion; however, the marginal tax rate is positive and significant in the
equation for underreported AGI but negative (though insignificant) in the equation for
overstated deductions. With two exceptions, the signs and relative magnitudes of the de-
mographic variables are similar across the two evasion equations. The two exceptions are,
first, the variable RETIRED, which is positive but insignificant in the underreported AGI
equation but negative and significant in the overstated deductions equation; and second,
the relative magnitude of the FARM coefficient is much larger in the underreported AGI
equation, suggesting that farmer evasion opportunities are concentrated in this area (for
example, income-smoothing techniques). The correlation between the disturbances in the
two evasion equations is very large at .8.

The estimates of detection are somewhat troubling. It is a commonly accepted wisdom
that overstated deductions are easier to detect than underreported income, because the
former leave a “paper trail” behind. Unfortunately, the detection estimates in Table 4 and
the detection rates in Figure 4 do not accord with this intuition. Overall, detection is actually
somewhat lower in the overstated deductions equation, both on average and among the 43
examiners with individual effects. This result serves to highlight the care that must be taken
in interpreting the absolute levels of computed detection rates (as opposed to the comparison
of relative rates), discussed in Section 6 below. The correlation between the detection equa-
tions is estimated at .2.

5. The calculation of multipliers and tax gap estimates

B I now address a central aim of the study, quantifying the aggregate extent of tax evasion
(the “tax gap™) in the population. I am interested in extrapolating data on the extent of
detected evasion in the TCMP sample to estimates of the extent of total evasion, both
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TABLE 4 Underreported Income and Overstated Deductions: Joint Estimation for 1982
(Dependent Variables: AGI Underreported and Deductions Overstated)

Independent Variable Estimates Independent Variable Estimates
Evasion Equation for AGI Evasion Equation for Deductions
Underreported: Overstated:
CONSTANT —6008 (117) CONSTANT -1656 (81.4)
AGI 5329 (275)* AGI 1655 (222.9)*
AGI? —1233 (259) AGI? —348.9 (130)*
AGINEG 20380 (4821)* AGINEG —3405 (2605)
MTAX 9031 (236)* MTAX 4505 (203)*
SCEDC 3781 (399)* SCEDC 677.7 (212)*
FARM 2475 (702) FARM 131.6 (612)
RETIRED 460.8 (288) RETIRED —377.8 (191)*
IDM —22470 (952)* IDM —3904 (757)*
IDH —11270 (864)* IDH —1154 (667)
CAPGAINS -.01281 (.00377)* CAPGAINS —.0344 (.00735)*
MARRIAGE 975.5 (177)* MARRIAGE 512.7 (98.1)*
Detection Equation for AGI Detected Equation for Deductions
Underreported: Overstated:
CONSTANT .479 (.00939) CONSTANT 353 (.0176)
GS GRADE —.258 (.00857)* GS GRADE —.0917 (.0158)*
NUMFORMS 138 (.0118)* NUMFORMS .0106 (.0194)
oy 6500 o, 2700
o\DET 25 o DET 23
P1 8
P2 2
Log Likelihood —6146

* Statistically significant at 5% level.

detected and undetected, in the United States filer population at large. In focusing on the
filer population, I am excluding several other important sources of evasion, including cor-
porate evasion and nonfilers; future work may well be able to extend the results reported
here to those categories.

Previous IRS estimates of filer evasion also use multipliers to scale up TCMP-detected
evasion to estimates for the total filer population. The bulk of these multipliers derive from
a 1976 study described in the IRS publication 1976 TCMP—IRP Study (see IRS (1983,
1988)). This study consisted of two parts. First, the standard TCMP examination was
performed, detecting a certain amount of filer evasion. In the second phase of the study,
certain returns were reexamined by examiners who had access to information records about
filers not normally available to TCMP examiners. This second round detected a considerable
amount of evasion that had gone undetected during the usual TCMP audits, particularly
in some income and deduction categories. The IRS has used the results of this study, together
with a number of other special studies of certain line-item categories (such as tips), to
compute multipliers with which to scale up different line-item categories of TCMP evasion;
these multipliers range from 1.0 to 3.28 (see IRS (1988), especially the supporting appen-
dices). It is important to note that the IRS methodology is fundamentally different from
the approach of the current study.

My estimates of multipliers will be based on the statistical models presented above.
Throughout the discussion, the term “multiplier” refers to a number « such that, if $.X of
evasion are detected in the weighted TCMP population, the estimate of total evasion in the
U.S. filer population, both detected and undetected, is

$aX.
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FIGURE 4

DUAL HISTOGRAMS OF EXAMINER DETECTION RATES: UNDERREPORTED
INCOME AND OVERSTATED DEDUCTIONS
COMPUTED BASED ON FRACTIONAL DETECTION ESTIMATES
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Since $.X are detected, the estimate of undetected evasion is
$(a - 1)X,

which is the statistical estimate on which the discussion focuses. As discussed in the preceding
paragraph, the IRS estimate of « is 3.28.

The proposed multipliers use the model estimates of examiner detection rates to create
an estimate of the aggregate average detection rate, denoted T below.

I compute multipliers based on the basic models of total net taxable income evaded,
presented in Table 2. Let w; denote the weight of case i, and v; denote the detection parameter
associated with the examiner assigned to case i. If the examiner is one of the 43 with
individual effects, say the jth, v; = 8, + BsGS; + ByumrorusNUMFORMS;; otherwise,
¥i = CONSTANT + B6sGS; + BnvunrorusNUMFORMS. In these formulae B, is the ex-
aminer’s detection effect in the relevant model, CONSTANT the overall constant in the
relevant detection equation estimates, B¢s the relevant GS grade coefficient, GS; the ex-
aminer’s GS grade dummy, Syuaroras the relevant coefficient on the number of forms filed,
and NUMFORMS; (and NUMFORMS) the average number of forms filed on an examiner’s
return. Let o; be the estimated standard error of v;; the true parameter v, is then assumed
to be normally distributed with mean +; and variance o?. Let f; denote the expected detection
rate on the /th case. Then, for each value v, the expected detection rate is

Yio— 1 fl 1 ~(vi0—$)2/ 267
0) = B ——— |+ | = ¢a(s)e o235
g(vio) ( ) s Voo ¢2(5)

a2
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where ¢,(s) is the detection density at s; and

fi= g(vio)N(vio0; vis 0:)dvi0.
Yio
We then define the statistic 7 as
Z wifi

EW,'.

i

T=

T is an estimate of the average rate at which evasion (net taxable income underreported)
is detected. The rate of nondetection is then 1 — T. If $ X of evasion is detected, a total

(-7

$X/T of evasion is estimated to be present, hence a total T

$ X remains undetected.

Define M = %; M refers to the ratio between detected and undetected evasion. Finally,
then, the multiplier for total evasion is
a=(1+M).
Derivation of the standard error associated with « is straightforward. First, note that
var () = var (M).

One can then derive

Z wi var (f)
var (M) = W var (T)
and l
Z wi var (f)
var (T) = W .

O Multiplier and tax gap estimates. Table 5 presents multiplier estimates. The most reliable
multipliers were computed for total evasion, based on the model estimates for 1982 and
1985 presented in Table 2. These estimates are 1.94 for 1982 and 1.96 for 1985, with 90%
confidence intervals stretching approximately from 1.60 to 2.4.

A second set of multipliers presented in Table 5 is based on estimates for underreported
AGI similar to (but not identical with) those in Table 4. The rationale for these multipliers

TABLE 5 Multiplier Estimates Based on Fitted Models
1982 TCMP 1985 TCMP
Fractional Detection Fractional Detection

Multiplier Based on Total Detected Evasion 1.94 1.96
(.42) (.49)
Multiplier Based on Detected Underreported Income 2.38 3.03
(.44) (.50)
[Implied Multiplier for Total Evasion when all 2.01 2.77
Deduction Overstatements Detected] (.32) (.44)

The numbers in parentheses are estimated standard errors.
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is that overstated deductions leave a “paper trail” leading to very high detection rates, which
may be approximated as perfect. (Note however that the detection controlled estimates
(DCE) for overstated deductions indicate surprisingly low detection rates.) Hence an alter-
native calculation applies a multiplier to the fraction of detected evasion due to underreported
AGI and a multiplier of unity to the fraction due to overstated deductions. These multipliers
comprise the bottom row of Table 5.

Overall, three of the four multiplier estimates, and the two most reliable estimates, are
centered close to 2. According to these estimates, approximately one-half of all evasion is
detected on TCMP returns.

Finally, an alternative means of computing these multipliers, which was not used,
weights each examiner’s contribution to the average detection rate not just by his weighted
caseload, but also by the characteristics of the filers he has been assigned. Specifically, in
each case i an estimate of the expected magnitude of evasion is computed, and multiplies
the f; defined above.

Table 6 presents the tax gap estimates that derive from the overall fractional detection
multipliers described above, together with the previous IRS estimates. The striking feature
of these estimates is their similarity: according to these estimates, the fractional detection
methodology and the IRS methodology provide almost identical estimates of filer evasion.
Thus, for example, for tax year 1987 the DCE estimates project the tax gap to be $83.7
billion (with a 90% confidence interval of +$9.5 billion), and the IRS multiplier projects
the tax gap to be $84.9 billion. Since the two methods are based on very different principles,
and use somewhat different data sources, this result must be seen as substantially improving
our confidence in the general level of these estimates.

In interpreting the new multiplier estimates, note that only the individual filers evasion
category has been reestimated; it would be interesting to extend the present methodology
to the other categories in future work.

In summary, we have used the fractional detection model estimates to derive multipliers
with which to extrapolate from the TCMP audit findings to estimates of evasion for the
total U.S. filer population. The new multiplier estimates are quite similar to the earlier IRS
estimates,

6. Limitations and extensions

B The models and estimates presented above depend on a number of assumptions for
their validity; some of those assumptions are intrinsic to the method used, while others can

TABLE 6 Tax Gap Estimates
Tax Year 1982 Tax Year 1987
(Billions of 1982 Dollars) (Billions of 1987 Dollars)
New DCE IRS* New DCE IRS?
Source Estimate Estimate Estimate Estimate
Total Gap 63.4 62.6 83.7 84.9
(£7.8) (£9.5)
Corporations 10.7 10.7 10.7 10.7
Individuals 52.7 51.9 73.0 74.2
Nonfilers 5.7 5.7 7.2 72
Filers 47 46.2 84.6 67
(7.8) (£9.5)

* Source: Income Tax Compliance Research: Gross Tax Gap Estimates and Projections, Department
of the Treasury, Internal Revenue Service, Research Division, March 1988.
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be relaxed in future work, particularly if larger and more powerful computer facilities are
available. While many of these assumptions, limitations, and possible extensions have been
alluded to above, additional insights can be gained by listing and comparing them here.

In a broad sense, the detection controlled method is statistical; hence parameter values
and multipliers derived from this method represent estimates, not certain facts. As estimates
these should be compared to alternative nonstatistical calculations where possible, and should
always be interpreted cautiously.

In addition, the detection controlled models rest on certain specific statistical assump-
tions that in some cases are stronger than those required in other statistical procedures. The
most important of these are the assumptions needed to identify the determinants of evasion
separately from the determinants of detection, particularly in an absolute sense. To illustrate
the identification problem, consider the following example, which refers to the detection
controlied probit model discussed in Feinstein (1989, 1990). Suppose that the probability
of filer i evading is pye™®, where p, is the average frequency of noncompliance in the
population and the term ¢™*#' flyctuates above and below 1 depending on whether this
filer’s characteristics lead him to be more or less likely to evade than average. Similarly,
conditional on evasion let the probability of detection be gqe***2, where qq is the average
level of detection by IRS examiners and x,; are the characteristics of the examiner assigned
to filer . All that is observed in the data is whether or not evasion is both committed and
detected, the probability of which (under independence ) is e** pogoe*##?—hence statistical
inference must be based on this product, as indeed the corresponding likelihood of equation
(5) in Section 2 is. Notice, however, that in this example the factors py and ¢y cannot be
separately isolated; only their product pyge can be determined. Put another way, a given
level of average detected violation may be due to a high frequency of evasion and a low
frequency of detection (high py and low gg), or to the opposite.

This example is extreme; it and related examples are discussed much more fully in
Feinstein (1990, 1989), where it is shown that this double exponential case is the only
parametric form in which identification of absolute levels formally fails. Nonetheless, it
serves as a warning that absolute levels are more difficult to identify than the relative mag-
nitudes of coefficients. To elaborate on this point, notice that even in the double exponential
example, elements of x; that are excluded from Xx,, and elements of x, excluded from x,,
possess estimable coefficients. Further, explanatory variables included in both x; and x;
possess estimable reduced-form coefficients. (In ali of the models presented in the previous
section, x; and x;, are disjoint other than their constants, the “po” and “gy”.)

The discussion of identification has two further implications. First, since the multipliers
depend critically on estimates of the absolute (average) levels of detection, they are most
sensitive to the identification problem. Second, if one or a group of particularly outstanding
examiners could be found and assigned a set of reference cases, they would help determine
Do, and thus could be used to calibrate absolute detection rates among the remaining ex-
aminers (this point arose first in discussion with IRS researchers). Alternatively, the DCE
estimates may be seen as tying down absolute detection rates by finding a set of “best”
examiners in the data and assigning them the highest detection rates; all other examiner
rates are then determined by comparing their performance to these top examiners. If such
“best” examiners could be identified separately, confidence in the absolute level of the DCE
estimates would be improved. As it is, the definition of “best” estimated here varies from
model to model, ranging from approximately 75% to over 90%.

A second limitation of the current work is that the models are not fully structural. In
particular, filer evasion equations have not been derived from utility maximization principles.
Further, the probability of audit has not been explicitly introduced and allowed to depend
on filer characteristics and reporting decisions; in a recent article, Beron, Witte, and Tauchen
(1988) do address this issue, and they point out certain problems of endogeneity that result
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and can bias estimates. In the fullest sense, the audit probability and evasion decision should
be derived from a fully specified gaming relationship between the IRS and the taxpayer
population. Theoretical models of this type have been proposed by Reinganum and Wilde
(1986), Graetz, Reinganum, and Wilde (1986), and Scotchmer (1987); however, a satis-
factory econometric model has not yet been developed and estimated. (See, however, Erard
and Feinstein (1990) for a first step in this direction.)

The current work has taken one step toward estimating less aggregated models of eva-
sion, by separating the AGI underreporting and deductions overstatement decisions. How-
ever, more work must be done in this area. (For a recent contribution see Klepper and
Nagin (1989).)

Finally, as discussed in Section 4, the tobit specification does not fit the data well, and
alternative specifications should be considered.

Appendix

B Here I present the disaggregated model discussed in Section 2. Let Y, refer to detected underreported income
and Y, refer to overstated deductions. There are four cases to consider: (i)Y, =0and Y, = 0; (ii) Y, = 0 and

1
Y;> 0; (iii) ¥, > O and Y, = 0; and (iv) Y, > O and ¥, > 0. Let ¢1.(x) = — ¢(x/1,), and similarly define ¢,,,
g

1u

$24, and ¢y, In similar fashion define ®,,(x) = &(x/ 01,) and @4, ®,,, and ®,,. Finally, define the conditional
density and cumulative density function

drdx|y) = ! {x + Uldpl/tr,,,y]

UluVI - Pf UluVI - P%
and similarly define 14(x|y), ¢2u(X{¥), d2a(xX|p), Prulx]¥), B1a(x]¥), B2l x|y), and Spg(x|y).

Case (i): the likelihood consists of four parts: (a) ¥;, = 0 and Y1, =0;(b) Yy, > 0 (and Y, = 0) and ¥, = 0; (c)
Y, =0and Y,y > 0 (and Y, = 0); and (d) ¥}, > 0 (and Ys, = 0)and Y, > 0 (and Yo, = 0). The likelihood of
part (a) is

—X1aB1a
f dala)! — 1,(X1uBru| €1a)dera.

The likelihood of part (b) is

fm bralea)[l — 1 XiuBuul e1a)lderdll — @2 XzufBoa)].

1a==X1abra

The likelihood of part (c) is identical to part (b), with the roles of d and u reversed. The likelihood of part (d) is

Y o —X2aB24
f f d1a(€12) 1 eru éld)déludéxdf $2a( €)1 — ol XpuBou| €24)]des.
e €2d=—0

1d=—XiaBrd Yeru=—X1uB1u

Case (ii): again, the likelihood consists of four parts: (a) Y,y complete and Yy, = 0; (b) Ys, complete and Yy, > 0;
(¢) Yyzincomplete and Y), = 0; and (d) Y5, incomplete and Y. > 0. The likelihood of part (a) is

—XtuB1y
f Sruler) bra(eral € dery - Bra(XoaBra — 1).

€12=
The likelihood of part (b) is
0 —X2uB2u
f Srul€) P1a(€ral Exu)déluf S2u(€2u) Paal€24] €2u)d 2.
e1=—X1uB1u €2u=-0

The likelihood of part (¢) is

—X1ubtu o
[ I butenbraterd 6 0a¥a/ Yia = Xoabra)dendca,
lu=—00 VYig=Yy
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where we implicitly have defined Y, and ¢,4 = Y14 — X14814. The likelihood of part (d) is

f f Y e dral€ral €1) 020(Ya/ Yia — X2aB2a)[1 — ®2u( XowBau| €20)derudery.

10==~X1ubu V¥14=Ys
Case (iii) is identical to case (ii), with the roles of 4 and u reversed.

Case (iv): again, the likelihood consists of four parts: (a) Y2, complete and Y,, complete; (b) Y,, complete and
Y,, incomplete; (c) Y2, complete and Y,, incomplete; and (d) both incomplete. The likelihood of part (a) is

0

O¥u = XiuBr)(Ya — Xiabral ) [ o e2a) Bt Xnaboa — 1| ) dens.

e2u=1—XouB2u

The likelihood of part (b) is
$1a(Yg — X1aB1a) fy v druleral Yo — X1aB12) 02 Yo/ Yiu — XouB20) P20( X2aB2a — 1] €2u) dera.
1Ww=fu
Part (c) is similar to (b), with the roles of d and u reversed. The likelihood of part (d) is

f f ¢lu(élu)¢ld(fld] €10) 02u( Y/ Yiu — XouBou) $24(Ya/Yia — XZdBZdI EZu)délddflw
Yiu=Yy VY14=Y4
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